mrm8488 commited on
Commit
fdb580b
1 Parent(s): c6cab93

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +157 -0
README.md ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: eo
3
+ datasets:
4
+ - common_voice
5
+ tags:
6
+ - audio
7
+ - automatic-speech-recognition
8
+ - speech
9
+ - xlsr-fine-tuning-week
10
+ license: apache-2.0
11
+ model-index:
12
+ - name: XLSR Wav2Vec2 Esperanto Manuel Romero
13
+ results:
14
+ - task:
15
+ name: Speech Recognition
16
+ type: automatic-speech-recognition
17
+ dataset:
18
+ name: Common Voice eo
19
+ type: common_voice
20
+ args: eo
21
+ metrics:
22
+ - name: Test WER
23
+ type: wer
24
+ value: 15.86
25
+ ---
26
+
27
+ # Wav2Vec2-Large-XLSR-53-esperanto
28
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Esperanto using the [Common Voice](https://huggingface.co/datasets/common_voice).
29
+ When using this model, make sure that your speech input is sampled at 16kHz.
30
+
31
+ ## Usage
32
+
33
+ The model can be used directly (without a language model) as follows:
34
+
35
+ ```python
36
+
37
+ import torch
38
+
39
+ import torchaudio
40
+
41
+ from datasets import load_dataset
42
+
43
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
44
+
45
+ test_dataset = load_dataset("common_voice", "eo", split="test[:2%]").
46
+
47
+ processor = Wav2Vec2Processor.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-esperanto")
48
+
49
+ model = Wav2Vec2ForCTC.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-esperanto")
50
+
51
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
52
+
53
+ # Preprocessing the datasets.
54
+
55
+ # We need to read the aduio files as arrays
56
+
57
+ def speech_file_to_array_fn(batch):
58
+
59
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
60
+
61
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
62
+
63
+ return batch
64
+
65
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
66
+
67
+ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
68
+
69
+ with torch.no_grad():
70
+
71
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
72
+
73
+ predicted_ids = torch.argmax(logits, dim=-1)
74
+
75
+ print("Prediction:", processor.batch_decode(predicted_ids))
76
+
77
+ print("Reference:", test_dataset["sentence"][:2])
78
+
79
+ ```
80
+
81
+ ## Evaluation
82
+
83
+ The model can be evaluated as follows on the Ukrainian test data of Common Voice.
84
+
85
+ ```python
86
+
87
+ import torch
88
+
89
+ import torchaudio
90
+
91
+ from datasets import load_dataset, load_metric
92
+
93
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
94
+
95
+ import re
96
+
97
+ test_dataset = load_dataset("common_voice", "eo", split="test")
98
+
99
+ wer = load_metric("wer")
100
+
101
+ processor = Wav2Vec2Processor.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-esperanto")
102
+
103
+ model = Wav2Vec2ForCTC.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-esperanto")
104
+
105
+ model.to("cuda")
106
+
107
+ chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”\\�]'
108
+
109
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
110
+
111
+ # Preprocessing the datasets.
112
+
113
+ # We need to read the aduio files as arrays
114
+
115
+ def speech_file_to_array_fn(batch):
116
+
117
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
118
+
119
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
120
+
121
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
122
+
123
+ return batch
124
+
125
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
126
+
127
+ # Preprocessing the datasets.
128
+
129
+ # We need to read the aduio files as arrays
130
+
131
+ def evaluate(batch):
132
+
133
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
134
+
135
+ with torch.no_grad():
136
+
137
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
138
+
139
+ pred_ids = torch.argmax(logits, dim=-1)
140
+
141
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
142
+
143
+ return batch
144
+
145
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
146
+
147
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
148
+
149
+ ```
150
+
151
+ **Test Result**: 15.86 %
152
+
153
+ ## Training
154
+
155
+ The Common Voice `train`, `validation` datasets were used for training.
156
+
157
+ The script used for training can be found ???