patrickvonplaten commited on
Commit
e8cc4d8
1 Parent(s): 38e8348

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +111 -13
README.md CHANGED
@@ -1,26 +1,124 @@
1
-
2
  ---
3
-
4
  language: es
5
-
6
  datasets:
7
-
8
  - common_voice
9
-
10
  tags:
11
-
 
12
  - speech
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
- - audio
 
 
15
 
16
- - automatic-speech-recognition
17
 
18
- - spanish
19
 
20
- - reconocimiento-de-audio
 
 
 
 
21
 
22
- license: apache-2.0
23
 
24
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
- # Spanish (es) version of the XLSR-Wav2Vec2 automatic speech recognition (ASR) model
 
 
1
  ---
 
2
  language: es
 
3
  datasets:
 
4
  - common_voice
 
5
  tags:
6
+ - audio
7
+ - automatic-speech-recognition
8
  - speech
9
+ - xlsr-fine-tuning-week
10
+ license: apache-2.0
11
+ model-index:
12
+ - name: XLSR Wav2Vec2 Spanish Manuel Romero
13
+ results:
14
+ - task:
15
+ name: Speech Recognition
16
+ type: automatic-speech-recognition
17
+ dataset:
18
+ name: Common Voice es
19
+ type: common_voice
20
+ args: es
21
+ metrics:
22
+ - name: Test WER
23
+ type: wer
24
+ value: ???
25
+ ---
26
 
27
+ # Wav2Vec2-Large-XLSR-53-Spanish
28
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Spanish using the [Common Voice](https://huggingface.co/datasets/common_voice).
29
+ When using this model, make sure that your speech input is sampled at 16kHz.
30
 
31
+ ## Usage
32
 
33
+ The model can be used directly (without a language model) as follows:
34
 
35
+ ```python
36
+ import torch
37
+ import torchaudio
38
+ from datasets import load_dataset
39
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
40
 
41
+ test_dataset = load_dataset("common_voice", "es, split="test[:2%]").
42
 
43
+ processor = Wav2Vec2Processor.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-spanish")
44
+ model = Wav2Vec2ForCTC.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-spanish")
45
+
46
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
47
+
48
+ # Preprocessing the datasets.
49
+ # We need to read the aduio files as arrays
50
+ def speech_file_to_array_fn(batch):
51
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
52
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
53
+ return batch
54
+
55
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
56
+ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
57
+
58
+ with torch.no_grad():
59
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
60
+
61
+ predicted_ids = torch.argmax(logits, dim=-1)
62
+
63
+ print("Prediction:", processor.batch_decode(predicted_ids))
64
+ print("Reference:", test_dataset["sentence"][:2])
65
+ ```
66
+
67
+
68
+ ## Evaluation
69
+
70
+ The model can be evaluated as follows on the Spanish test data of Common Voice.
71
+
72
+
73
+ ```python
74
+ import torch
75
+ import torchaudio
76
+ from datasets import load_dataset, load_metric
77
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
78
+ import re
79
+
80
+ test_dataset = load_dataset("common_voice", "es", split="test")
81
+ wer = load_metric("wer")
82
+
83
+ processor = Wav2Vec2Processor.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-spanish")
84
+ model = Wav2Vec2ForCTC.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-spanish")
85
+ model.to("cuda")
86
+
87
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
88
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
89
+
90
+ # Preprocessing the datasets.
91
+ # We need to read the aduio files as arrays
92
+ def speech_file_to_array_fn(batch):
93
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
94
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
95
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
96
+ return batch
97
+
98
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
99
+
100
+ # Preprocessing the datasets.
101
+ # We need to read the aduio files as arrays
102
+ def evaluate(batch):
103
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
104
+
105
+ with torch.no_grad():
106
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
107
+
108
+ pred_ids = torch.argmax(logits, dim=-1)
109
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
110
+ return batch
111
+
112
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
113
+
114
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
115
+ ```
116
+
117
+ **Test Result**: ??? %
118
+
119
+
120
+ ## Training
121
+
122
+ The Common Voice `train`, `validation` datasets were used for training.
123
 
124
+ The script used for training can be found ???