{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc846f07640>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690815827723608601, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABcuS76A47U9Bv1+P+b8az0dgTK9x0YZPan8Fb40pf+9/1AavwtALL65bDO8uKNJvGcnBz8AB2i+tSF6PwB0r714XV4/y7k9vqE+X76CtMO8Gi+APxDRl7uOXIm/DuqMvwAAgD8AAIA/AACAPwAAAABOaAe+ury1PoFUbz+GoYU99b22Pb8ryztZJyM9b6x5vbcFgL8nN1E6L69Nv7VEqr2i2kI9tOY/PqNYzr1UGKq7dntMP87xGj1uPxQ+sKKIPYkBlD4OQDy9JWPJPjOXZzgAAAAAAACAPwAAgD8AAIA/XvJvvlT/gb3Xe38/t8UKPrNC3z12HKI8EJmcvSITpTtsLYA/rE+vu12GNb9YW+E9MnB8PpgxAT5HaRc/4YxvvJN2CD9YvDy+hpvvPR3z3T2lGAk/pMxlPvREeb9Uov49AACAPwAAgD8AAIA/AAAAALMfCL5/pNa8gOl/P0tWEz4SrB6+gtQvvQrAxj2EfNu9OJiHv8g/2ziBmRY/+mYbv//vPD4ZK+Q+Y7zrvR1joj1Zchk+xO5zPqijgT9LZGI+HcYaP5tIEr/hqX4/Na3iPQAAAAAAAIA/AAAAAAAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIa5Li2lVLmMAWyUTegDjAF0lEdAqrGt12aDw3V9lChoBkdAh95zF2mpEWgHTegDaAhHQKq00+t8uz11fZQoaAZHQIVRqrzXjENoB03oA2gIR0Cqt/fOMVDbdX2UKGgGR0CGVVQemvW6aAdN6ANoCEdAqrlgInjQzHV9lChoBkdAhQT3/HYHxGgHTegDaAhHQKq948mrsB11fZQoaAZHQG4scGcFyJdoB028AWgIR0CqvstzKcNIdX2UKGgGR0CGOB7dBSk1aAdN6ANoCEdAqsG87QswtnV9lChoBkdAhHDXo9s7+2gHTegDaAhHQKrGQcriEQJ1fZQoaAZHQG7vf5DZ13doB026AWgIR0Cqy4Ftj0+UdX2UKGgGR0CE2WDaGpMpaAdN6ANoCEdAqswHNzKcNHV9lChoBkdAhZUCudPLxWgHTegDaAhHQKrM6mx+rlx1fZQoaAZHQIU77ZL7GedoB03oA2gIR0CqzwYf4h2XdX2UKGgGR0CCmJmL9/BnaAdN6ANoCEdAqtd0Oy3TeHV9lChoBkdAgy8Lnkkrw2gHTegDaAhHQKrYAzdDYyx1fZQoaAZHQIIYN7SiM5xoB03oA2gIR0Cq2O1jy4FzdX2UKGgGR0CEqisAeaKDaAdN6ANoCEdAqtuRvDP4VXV9lChoBkdAhQVh8pkPMGgHTegDaAhHQKrl5NL127p1fZQoaAZHQISx/uJDVpdoB03oA2gIR0Cq5m4Ny5qedX2UKGgGR0CE1MhcJMQFaAdN6ANoCEdAqudSUmlZYHV9lChoBkdAhZHCnxaxHGgHTegDaAhHQKrpcVRDTjN1fZQoaAZHQIazmzposZpoB03oA2gIR0Cq8frWRRuTdX2UKGgGR0CHikd/axoqaAdN6ANoCEdAqvKECo0hvHV9lChoBkdAhYAT3RG+bmgHTegDaAhHQKrzay5Zr591fZQoaAZHQIY5amXPZ7JoB03oA2gIR0Cq9coCEHt4dX2UKGgGR0B5fDcrRSgoaAdN6ANoCEdAqwB72tdRi3V9lChoBkdAhqeDLKV6eGgHTegDaAhHQKsBCumrKeV1fZQoaAZHQIlcsju8brFoB03oA2gIR0CrAfDkU9IPdX2UKGgGR0CGZvVDKHO9aAdN6ANoCEdAqwQYo/iYLXV9lChoBkdAhj17wz+FUWgHTegDaAhHQKsMopEx7At1fZQoaAZHQIR49mJ3xF1oB03oA2gIR0CrDTJlJ6IFdX2UKGgGR0CGqTwvxpcpaAdN6ANoCEdAqw4eQ4jrzHV9lChoBkdAhWWrPUrkKmgHTegDaAhHQKsQVPmgam51fZQoaAZHQIeMZ6OYIB1oB03oA2gIR0CrGxSauwHJdX2UKGgGR0CIcZtFa0QcaAdN6ANoCEdAqxueZiNKiHV9lChoBkdAhnyYISlFdGgHTegDaAhHQKscka8YhuB1fZQoaAZHQIYW82NvOyFoB03oA2gIR0CrHsqPfbbldX2UKGgGR0CD2I6VdHDraAdN6ANoCEdAqydMdgfEGnV9lChoBkdAhM3ZfUnXumgHTegDaAhHQKsn1hZQpF11fZQoaAZHQIQ7Md1dPcloB03oA2gIR0CrKL0KRdQgdX2UKGgGR0CExMx/NJOGaAdN6ANoCEdAqyrl+Vkc0nV9lChoBkdAhXfe+/QBxWgHTegDaAhHQKs1unx8UmF1fZQoaAZHQIXbJeJHiFVoB03oA2gIR0CrNk1e0G/vdX2UKGgGR0CGg78jzI3jaAdN6ANoCEdAqzc15fMOgHV9lChoBkdAhUxiCz1K5GgHTegDaAhHQKs5WT6i0v51fZQoaAZHQIBzWKqGUOdoB03oA2gIR0CrQeO7HyVfdX2UKGgGR0CCQRNBWxQjaAdN6ANoCEdAq0JucjJMg3V9lChoBkdAgosVGCqZMWgHTegDaAhHQKtDWX/o7mx1fZQoaAZHQIeANH2AXl9oB03oA2gIR0CrRYJ3xFy8dX2UKGgGR0CEUFOclPadaAdN6ANoCEdAq1Bu8dxQznV9lChoBkdAhdjFjd56dGgHTegDaAhHQKtQ/aoMrmR1fZQoaAZHQITkYFJQLuxoB03oA2gIR0CrUehMajvedX2UKGgGR0CEm8EkjX4CaAdN6ANoCEdAq1QEcENe+nV9lChoBkdAhiZDQiRnvmgHTegDaAhHQKtchrFfiP11fZQoaAZHQIXHjgKnei1oB03oA2gIR0CrXRBCdBjXdX2UKGgGR0CKKhOpKjBVaAdN6ANoCEdAq13803wTd3V9lChoBkdAg31pWNm16WgHTegDaAhHQKtgDezlcQl1fZQoaAZHQIzkgBgeA/doB03oA2gIR0CrasDTBqKxdX2UKGgGR0CO28SV4X41aAdN6ANoCEdAq2tOvbGm13V9lChoBkdAi76vtMPBi2gHTegDaAhHQKtsQETQE6l1fZQoaAZHQIubkgGKQ7toB03oA2gIR0CrbmvECNjtdX2UKGgGR0CFD3Ba9sabaAdN6ANoCEdAq3b6pLmITHV9lChoBkdAgEbw/X5FgGgHTegDaAhHQKt3hNfPX051fZQoaAZHQIr27HsC1Z1oB03oA2gIR0CreGkUKzAvdX2UKGgGR0CKuK++ueSTaAdN6ANoCEdAq3qPhZQpF3V9lChoBkdAjf5E25xzaWgHTegDaAhHQKuFStJ4B3l1fZQoaAZHQIw+9mnO0LNoB03oA2gIR0Crhc3vhIe6dX2UKGgGR0CLkO2BreqJaAdN6ANoCEdAq4a4iJO32HV9lChoBkdAkAFYAS39aWgHTegDaAhHQKuIzYZl4C91fZQoaAZHQI48xzPrv9doB03oA2gIR0CrkTl3hXKbdX2UKGgGR0CLryc1fmcOaAdN6ANoCEdAq5G+qioKlnV9lChoBkdAhvrTUy57PmgHTegDaAhHQKuSph/Aj6h1fZQoaAZHQIMbIgDA8CBoB03oA2gIR0CrlMrt/nW8dX2UKGgGR0CJ2bIqbz9TaAdN6ANoCEdAq59mK8+Ro3V9lChoBkdAimJAIY3vQWgHTegDaAhHQKuf7FjNILB1fZQoaAZHQI9MNR1oxpNoB03oA2gIR0CroNDvd/KAdX2UKGgGR0CLg4cHWz4UaAdN6ANoCEdAq6Lni97F9HV9lChoBkdAilcC79Q40mgHTegDaAhHQKurQYE4ecR1fZQoaAZHQIvc8BhhH9ZoB03oA2gIR0Crq80WdmQKdX2UKGgGR0CH2DqASWZ7aAdN6ANoCEdAq6yxN9H+ZXV9lChoBkdAiqy5OafBe2gHTegDaAhHQKuu24iosI51fZQoaAZHQIskGEqUeMhoB03oA2gIR0CruXY0l7dBdX2UKGgGR0CNk7EtNBWxaAdN6ANoCEdAq7n56rvLHXV9lChoBkdAi614BV+7UWgHTegDaAhHQKu62r1/UfB1fZQoaAZHQIkpPFPznRtoB03oA2gIR0CrvPt7BwdbdX2UKGgGR0CFBAur6tT2aAdN6ANoCEdAq8VLVBlcyHV9lChoBkdAgxOfHHWBjGgHTegDaAhHQKvF1Q0oBq91fZQoaAZHQIXc0CYCyQhoB03oA2gIR0Crxre4smOVdX2UKGgGR0CLDB+T/yXlaAdN6ANoCEdAq8jjvPTodXV9lChoBkdAjVwVJlJ6IGgHTegDaAhHQKvTkH0K7Zp1fZQoaAZHQIkSHDpC8e1oB03oA2gIR0Cr1CAU1yeadX2UKGgGR0CJYPPNVzZIaAdN6ANoCEdAq9UAPEsJ6nV9lChoBkdAjKE+lj3Eh2gHTegDaAhHQKvXGTh5xBF1fZQoaAZHQI1Gq/yoXKtoB03oA2gIR0Cr34knTiKjdX2UKGgGR0COSCj5bhWHaAdN6ANoCEdAq+AUdJaq0nV9lChoBkdAi48Qg9vCM2gHTegDaAhHQKvg/vMr3Cd1fZQoaAZHQJAlVacI7eVoB03oA2gIR0Cr4xp4bCJodX2UKGgGR0CKa3xn3+MqaAdN6ANoCEdAq+3RQWN3n3V9lChoBkdAiX+gf+0gKWgHTegDaAhHQKvuWXUpd8l1fZQoaAZHQIll3+GXXy1oB03oA2gIR0Cr70alDWsjdX2UKGgGR0CLV4WhysCDaAdN6ANoCEdAq/FtBt1p03VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": true, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}