{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc846f07640>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 3000000, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690822564105464174, "learning_rate": 0.00095, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PIS13MY/FhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAHNIrx0w7w/ACTOvwHrHz+F+b0/UyqiPxDCoT9mHMc9S4Vgvs4uET8/1ME/rzq2vBMK/74bdFFAz7bvvxlicj2pdSi/VNFIP2s0AT/3/eO90qyvPxobXD1zF9o94mSePjh1gz9eCvM+ziTGPpYJFT831l0/hE+0P1qArr/tuVY+jhxSv+U3qD8D38A/vUpBvw1uf7+jrJg8knnLPdOAb8BN8ZU/2ViEvdaI1L+ww+M+9abRvzgaq78dOxg+DE81wHlSZD+OmnO/ZcaZP/6Cnj4iRHm/XgrzPvZfJcCWCRU/wy7jPqYP/z5hfCg+8SSWPviK3z+8ShE/6/9mPwPrdT1JRDO/QeIJwA/jzj/kZCS/wuRaPzdD5D7Gqzm/EgWNPlf37T5sU92+LyL9Pp7PJD0wrP29895Iv4LZyr65h2O+OHWDP14K8z7OJMY+lgkVP0Gpsj+t4Hw+GT26PoO6Iz87uKw9M+5av7pDlT8V99O/VGp/vz3Bm7rocIm/FjF6PuQYlT9oCjO83TgCPwc+KEA4vtK/qwzwvO5A/D4V9IU8zNEivzyZV74toqk/f9UOPyJEeb9E0wbAziTGPpYJFT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACXEXO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAuGciPQAAAABIDOq/AAAAAAkvXb0AAAAAK5fzPwAAAAChdnE9AAAAAEWM+j8AAAAAG3fsPQAAAACigOC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEeICNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgL2SLr0AAAAAiTT/vwAAAABD2fU6AAAAAB5W+T8AAAAAsT2KPQAAAADZWQBAAAAAAK2J1jwAAAAAoLj8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALHL3zYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICOmA2+AAAAAH6h378AAAAAWYMKPgAAAAAVq+8/AAAAALwlEj0AAAAAUWLZPwAAAAAO0QM9AAAAAD7j3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FW02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAh6ULPQAAAACdAOO/AAAAAJDEvj0AAAAA1yb7PwAAAACZo6c9AAAAAOgU3z8AAAAATAM7vAAAAAC7fdq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI8WhbB42TCMAWyUTegDjAF0lEdAtCrau/1xsHV9lChoBkdAjjF5y2hIv2gHTegDaAhHQLQrybM5fdB1fZQoaAZHQIpr76UJOWVoB03oA2gIR0C0LgYczZYgdX2UKGgGR0CPcpxXGOuJaAdN6ANoCEdAtC80bbUPQXV9lChoBkdAjAxuh0yP/GgHTegDaAhHQLQyUQBxPwd1fZQoaAZHQI6G4mVqveRoB03oA2gIR0C0M4BrSE13dX2UKGgGR0CIeLWmxdIHaAdN6ANoCEdAtDWyeg+Ql3V9lChoBkdAiwQ5n+Q2dmgHTegDaAhHQLQ22zvZyuJ1fZQoaAZHQI5bLzbvgFZoB03oA2gIR0C0OPu1KGtZdX2UKGgGR0CJ7t2ovSMMaAdN6ANoCEdAtDnn9m6GxnV9lChoBkdAjkKFbu+h5GgHTegDaAhHQLQ8JFbmlqJ1fZQoaAZHQIt+7iGWUr1oB03oA2gIR0C0PXOXZ5AydX2UKGgGR0CQJxFSbYseaAdN6ANoCEdAtECbuJDVpnV9lChoBkdAkBqMmOU+tGgHTegDaAhHQLRBjIClrM11fZQoaAZHQJFOs176YVtoB03oA2gIR0C0Q8vcWTHKdX2UKGgGR0CQ2thbnoxIaAdN6ANoCEdAtET/FdcB2nV9lChoBkdAkIGhdUsFuGgHTegDaAhHQLRHHzijtXx1fZQoaAZHQI8w730wrUdoB03oA2gIR0C0SBCcXm/4dX2UKGgGR0CMWfFrEcbSaAdN6ANoCEdAtEsWQCCBgHV9lChoBkdAj3DSdOIqLGgHTegDaAhHQLRNdtjkMkR1fZQoaAZHQJEKq5NGmUJoB03oA2gIR0C0UI+z2OABdX2UKGgGR0CKTCX0oSctaAdN6ANoCEdAtFF9j5Kvm3V9lChoBkdAkYmfZZjhDWgHTegDaAhHQLRTxXSBshx1fZQoaAZHQI6g3aURnOBoB03oA2gIR0C0VPj+NtIkdX2UKGgGR0CQis/lyR0VaAdN6ANoCEdAtFcmD/VAiXV9lChoBkdAkHsP/NqxkmgHTegDaAhHQLRYEradtl91fZQoaAZHQI6P8mv4dp9oB03oA2gIR0C0WqmNWEK3dX2UKGgGR0CQtwTmnwXqaAdN6ANoCEdAtFxzvoePrHV9lChoBkdAj74UPYnOSmgHTegDaAhHQLRe3azu4PR1fZQoaAZHQJAqpdxAB1doB03oA2gIR0C0X8mOyVv/dX2UKGgGR0CFxJ4W1twaaAdN6ANoCEdAtGIBv/BFeHV9lChoBkdAjdYBi1Aqu2gHTegDaAhHQLRjNMW43FV1fZQoaAZHQJCfNiMHbAVoB03oA2gIR0C0ZWAWFev7dX2UKGgGR0CRYesDGLk0aAdN6ANoCEdAtGZTIbOu73V9lChoBkdAiKUBun/DL2gHTegDaAhHQLRpJlXzUZx1fZQoaAZHQJJSToUzsQdoB03oA2gIR0C0atiSmqHXdX2UKGgGR0CQnsAI6bONaAdN6ANoCEdAtGz/2alUInV9lChoBkdAkL/O4LCvYGgHTegDaAhHQLRt5ngpBop1fZQoaAZHQJD+llg+hXdoB03oA2gIR0C0cBP+wTufdX2UKGgGR0CRq9vOyE+QaAdN6ANoCEdAtHE6tQsPKHV9lChoBkdAjfujL0SRKmgHTegDaAhHQLRzWnuiN851fZQoaAZHQJIh/VtoBaNoB03oA2gIR0C0dEHKSxJNdX2UKGgGR0CSkPrqdH2AaAdN6ANoCEdAtHdGmQ8wH3V9lChoBkdAkdTWjwhGIGgHTegDaAhHQLR4yTrmhdt1fZQoaAZHQJGC97WuoxZoB03oA2gIR0C0euwGSpzcdX2UKGgGR0CQyPWUbDMvaAdN6ANoCEdAtHvYyRB/qnV9lChoBkdAkFxX49HMEGgHTegDaAhHQLR+B9FnZkF1fZQoaAZHQJFRCW6bvw5oB03oA2gIR0C0fy31SOzZdX2UKGgGR0CQoZl3yI56aAdN6ANoCEdAtIFJ0+1SfnV9lChoBkdAkY0NwaR6nmgHTegDaAhHQLSCNpQUHpt1fZQoaAZHQJDKY7HQyARoB03oA2gIR0C0hZ73XZoPdX2UKGgGR0CRAYqZc9nsaAdN6ANoCEdAtIblgssg+3V9lChoBkdAjvJ28AaNuWgHTegDaAhHQLSJAK5TZQJ1fZQoaAZHQJBR5uYQarFoB03oA2gIR0C0iemiYb84dX2UKGgGR0CM2Rj6vaDgaAdN6ANoCEdAtIwiyzHCGnV9lChoBkdAj4ywMpgCwWgHTegDaAhHQLSNSd5Y5kt1fZQoaAZHQJAQc7fYSQJoB03oA2gIR0C0j2XmvGIbdX2UKGgGR0CQIE8qnWJ8aAdN6ANoCEdAtJCPmLcbi3V9lChoBkdAkKDnU+cH4WgHTegDaAhHQLSTpVf/m1Z1fZQoaAZHQI47hvP1L8JoB03oA2gIR0C0lOjoIOYqdX2UKGgGR0CQl+okiUxEaAdN6ANoCEdAtJdCEmICVHV9lChoBkdAkSqCPyTY/WgHTegDaAhHQLSYQDHfdh11fZQoaAZHQI5KagVXV9ZoB03oA2gIR0C0mplx0dR0dX2UKGgGR0CRGmw+dK/VaAdN6ANoCEdAtJvJjlPrOnV9lChoBkdAkGt6n752yWgHTegDaAhHQLSeTmseXAx1fZQoaAZHQJBJPicXm/5oB03oA2gIR0C0n7FV5rxidX2UKGgGR0CQWMQxN7BwaAdN6ANoCEdAtKJzj94u9XV9lChoBkdAkNjFq33HrGgHTegDaAhHQLSjqNL127p1fZQoaAZHQI6C7CHh0hhoB03oA2gIR0C0pdRhYvFndX2UKGgGR0CRgglV94NaaAdN6ANoCEdAtKbGB3A2ynV9lChoBkdAkRubJbMX8GgHTegDaAhHQLSpHQ40dil1fZQoaAZHQJDYKfWcz69oB03oA2gIR0C0qlf/echDdX2UKGgGR0CQwGgqEvkBaAdN6ANoCEdAtK1Qal1r7HV9lChoBkdAkUImFajesWgHTegDaAhHQLSutpJwsGx1fZQoaAZHQJCW+9RJmNBoB03oA2gIR0C0sRHZkCmudX2UKGgGR0CRDZq4H5aeaAdN6ANoCEdAtLJbPcBU73V9lChoBkdAkGzWT1TR6WgHTegDaAhHQLS0tPAfuCx1fZQoaAZHQJBlVTMqz7doB03oA2gIR0C0tbFtsN2DdX2UKGgGR0CPpTp35eqraAdN6ANoCEdAtLgKKwY+CHV9lChoBkdAkQ3FjmSyMWgHTegDaAhHQLS5pHeaa1F1fZQoaAZHQJIr39If8uVoB03oA2gIR0C0vLgq7ROUdX2UKGgGR0CTBzJjUd7waAdN6ANoCEdAtL2zLMcIaHV9lChoBkdAkBHErTYukGgHTegDaAhHQLS/9TgEU0x1fZQoaAZHQJDWAZFXq7loB03oA2gIR0C0wSRTsIE9dX2UKGgGR0CQ2WbuMMqjaAdN6ANoCEdAtMNGkZaV2XV9lChoBkdAkG4gBxPweGgHTegDaAhHQLTELV9nbqR1fZQoaAZHQJIBMipvP1NoB03oA2gIR0C0xoYIrvsrdX2UKGgGR0CRSoReTmnwaAdN6ANoCEdAtMg/Jp35e3V9lChoBkdAj/Cln7Hhj2gHTegDaAhHQLTK3mHP/rB1fZQoaAZHQIxO9tdiUgVoB03oA2gIR0C0y8rmQr+YdX2UKGgGR0CQxXlHSWqtaAdN6ANoCEdAtM4HL4etCHV9lChoBkdAkABWNrCWNWgHTegDaAhHQLTPQjnFHax1fZQoaAZHQIz05OUMXrNoB03oA2gIR0C00Xl+Vkc0dX2UKGgGR0CP8NN/vv0AaAdN6ANoCEdAtNJsnv2GqXV9lChoBkdAkHltZq20A2gHTegDaAhHQLTVNX4j8k51fZQoaAZHQJCaGBd2PktoB03oA2gIR0C01wlk1/DtdX2UKGgGR0CQWWAGjbi7aAdN6ANoCEdAtNlB4D9wWHV9lChoBkdAkLrgQ6IWQGgHTegDaAhHQLTaNhjOLR91fZQoaAZHQJAImiZfD1poB03oA2gIR0C03IDVH4GmdX2UKGgGR0CNymuxrzoVaAdN6ANoCEdAtN3DMRpUP3VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 93750, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": true, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}