mrp commited on
Commit
0dee901
·
1 Parent(s): c8f3fc2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -97
README.md CHANGED
@@ -7,11 +7,12 @@ tags:
7
  - transformers
8
  ---
9
 
10
- # {MODEL_NAME}
11
 
12
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
14
  <!--- Describe your model here -->
 
15
 
16
  ## Usage (Sentence-Transformers)
17
 
@@ -25,102 +26,9 @@ Then you can use the model like this:
25
 
26
  ```python
27
  from sentence_transformers import SentenceTransformer
28
- sentences = ["This is an example sentence", "Each sentence is converted"]
29
 
30
  model = SentenceTransformer('{MODEL_NAME}')
31
  embeddings = model.encode(sentences)
32
  print(embeddings)
33
- ```
34
-
35
-
36
-
37
- ## Usage (HuggingFace Transformers)
38
- Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
39
-
40
- ```python
41
- from transformers import AutoTokenizer, AutoModel
42
- import torch
43
-
44
-
45
- def cls_pooling(model_output, attention_mask):
46
- return model_output[0][:,0]
47
-
48
-
49
- # Sentences we want sentence embeddings for
50
- sentences = ['This is an example sentence', 'Each sentence is converted']
51
-
52
- # Load model from HuggingFace Hub
53
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
54
- model = AutoModel.from_pretrained('{MODEL_NAME}')
55
-
56
- # Tokenize sentences
57
- encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
58
-
59
- # Compute token embeddings
60
- with torch.no_grad():
61
- model_output = model(**encoded_input)
62
-
63
- # Perform pooling. In this case, max pooling.
64
- sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
65
-
66
- print("Sentence embeddings:")
67
- print(sentence_embeddings)
68
- ```
69
-
70
-
71
-
72
- ## Evaluation Results
73
-
74
- <!--- Describe how your model was evaluated -->
75
-
76
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
77
-
78
-
79
- ## Training
80
- The model was trained with the parameters:
81
-
82
- **DataLoader**:
83
-
84
- `torch.utils.data.dataloader.DataLoader` of length 20500 with parameters:
85
- ```
86
- {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
87
- ```
88
-
89
- **Loss**:
90
-
91
- `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
92
- ```
93
- {'scale': 20.0, 'similarity_fct': 'cos_sim'}
94
- ```
95
-
96
- Parameters of the fit()-Method:
97
- ```
98
- {
99
- "callback": null,
100
- "epochs": 1,
101
- "evaluation_steps": 0,
102
- "evaluator": "NoneType",
103
- "max_grad_norm": 1,
104
- "optimizer_class": "<class 'transformers.optimization.AdamW'>",
105
- "optimizer_params": {
106
- "lr": 3e-05
107
- },
108
- "scheduler": "WarmupLinear",
109
- "steps_per_epoch": null,
110
- "warmup_steps": 10000,
111
- "weight_decay": 0.01
112
- }
113
- ```
114
-
115
-
116
- ## Full Model Architecture
117
- ```
118
- SentenceTransformer(
119
- (0): Transformer({'max_seq_length': 32, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
120
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
121
- )
122
- ```
123
-
124
- ## Citing & Authors
125
-
126
- <!--- Describe where people can find more information -->
 
7
  - transformers
8
  ---
9
 
10
+ # {mrp/simcse-model-roberta-base-thai}
11
 
12
+ This is a [sentence-transformers](https://www.SBERT.net) by using XLM-R as the baseline model model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
14
  <!--- Describe your model here -->
15
+ We use SimCSE [here](https://arxiv.org/pdf/2104.08821.pdf) and training the model with Thai Wikipedia [here](https://github.com/PyThaiNLP/ThaiWiki-clean/releases/tag/20210620?fbclid=IwAR1YcmZkb-xd1ibTWCJOcu98_FQ5x3ioZaGW1ME-VHy9fAQLhEr5tXTJygA)
16
 
17
  ## Usage (Sentence-Transformers)
18
 
 
26
 
27
  ```python
28
  from sentence_transformers import SentenceTransformer
29
+ sentences = ["ฉันนะคือคนรักชาติยังไงละ!", "พวกสามกีบล้มเจ้า!"]
30
 
31
  model = SentenceTransformer('{MODEL_NAME}')
32
  embeddings = model.encode(sentences)
33
  print(embeddings)
34
+ ```