--- base_model: Steelskull/L3.3-Nevoria-R1-70b library_name: transformers license: other license_name: eva-llama3.3 tags: - mergekit - merge - mlx - mlx-my-repo model-index: - name: L3.3-Nevoria-R1-70b results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: wis-k/instruction-following-eval split: train args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 60.24 name: averaged accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Steelskull%2FL3.3-Nevoria-R1-70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: SaylorTwift/bbh split: test args: num_few_shot: 3 metrics: - type: acc_norm value: 56.17 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Steelskull%2FL3.3-Nevoria-R1-70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: lighteval/MATH-Hard split: test args: num_few_shot: 4 metrics: - type: exact_match value: 46.68 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Steelskull%2FL3.3-Nevoria-R1-70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa split: train args: num_few_shot: 0 metrics: - type: acc_norm value: 29.19 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Steelskull%2FL3.3-Nevoria-R1-70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 20.19 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Steelskull%2FL3.3-Nevoria-R1-70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 49.59 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Steelskull%2FL3.3-Nevoria-R1-70b name: Open LLM Leaderboard --- # mrtoots/Steelskull-L3.3-Nevoria-R1-70b-mlx-8Bit The Model [mrtoots/Steelskull-L3.3-Nevoria-R1-70b-mlx-8Bit](https://huggingface.co/mrtoots/Steelskull-L3.3-Nevoria-R1-70b-mlx-8Bit) was converted to MLX format from [Steelskull/L3.3-Nevoria-R1-70b](https://huggingface.co/Steelskull/L3.3-Nevoria-R1-70b) using mlx-lm version **0.26.4**. ## Toots' Note: Please follow and support [Steelskull's work](https://huggingface.co/Steelskull) if you like it! Settings and how best to run found on the [original model page](https://huggingface.co/Steelskull/L3.3-Nevoria-R1-70b). 🦛 If you want a free consulting session, [fill out this form](https://forms.gle/xM9gw1urhypC4bWS6) to get in touch! 🤗 ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mrtoots/L3.3-Nevoria-R1-70b-mlx-8Bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```