{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e8c48b4c980>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689877448537450528, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALMRRb1ci1y6dTQVO70EwTy0CBs4kvOlPQAAgD8AAIA/mvUXPfV1qj+ARNk9Ij8DvzDD0T0iYtY7AAAAAAAAAABGC2I+4SIOP47bq76w+RK/Ymc5PiSGnL4AAAAAAAAAABpwnj34pKQ88wIVvgGTW74ZrBu+nZ63PQAAAAAAAAAAmlyfPXLKjT4eXAG+u5Iiv7cYED2uZgi9AAAAAAAAAABm3r29b01fP0NPd76VK0O/zgQavv6csr0AAAAAAAAAADM0oz1yvDA+rnsIvsxhBL8DOh08Oo2RvQAAAAAAAAAAcyIDPj/bOz8ot3Q9q6UXvzKoaz4PtJa9AAAAAAAAAAAAxsu86kbAP+10Ub7gT3A+2ww3vdK7Gr4AAAAAAAAAAECBLz5iGBg/40BAvtCOE7/txS0+6E2DvgAAAAAAAAAAs4VcPeEAnLoqB169H83RO6AIGDxuLsK8AACAPwAAgD+tHBY+DERZP2e6gL3A6R+/AhwaPlXwUb4AAAAAAAAAADMbQLun0m4/GkW1u+HId78VgOO65ac5uwAAAAAAAAAAmp8ePcdolz8/1gs+k2I5vzMAvj0OPJo8AAAAAAAAAADAyI4+s+xdP5LA770ZKiK/pezUPu9Wl74AAAAAAAAAAM09Oz77V7M/CqYUP943x75JPq0+aUHEPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHYPoRqXWyMAWyUS6KMAXSUR0Cm2BlN+LFXdX2UKGgGR0Bx6pY2bXpXaAdLrWgIR0Cm2CMwlByCdX2UKGgGR0Bv4uzfJmulaAdLj2gIR0Cm2GgzHjp+dX2UKGgGR0BzptdE9dNWaAdLr2gIR0Cm2IIiTt9hdX2UKGgGR0BxVsWO6unuaAdLrWgIR0Cm2N7fP5YYdX2UKGgGR0BwzWFAVwglaAdLrWgIR0Cm2OhZha1UdX2UKGgGR0BxY3ZlFtsOaAdLs2gIR0Cm2PzzmOlwdX2UKGgGR0BynIHLRrrPaAdLtmgIR0Cm2QAoPTXrdX2UKGgGR0ByUuki2UjcaAdLlGgIR0Cm2XI55qubdX2UKGgGR0BzjShSLqD9aAdLrWgIR0Cm2Zbs4T9LdX2UKGgGR0BxhHnoxHoYaAdLsGgIR0Cm2cdat9x7dX2UKGgGR0BvoLb5/LDAaAdLmWgIR0Cm2fWv0RODdX2UKGgGR0BxB7VFx4puaAdLjmgIR0Cm2gJvxYq5dX2UKGgGR0Bzs6RyOq//aAdLwmgIR0Cm2oVdPci4dX2UKGgGR0BxM/uuzQeFaAdLsmgIR0Cm2p1PepGXdX2UKGgGR0Byb5CSidrgaAdL3mgIR0Cm2qGnGbTddX2UKGgGR0BxuLHAAQxvaAdLlGgIR0Cm2rXbuc+adX2UKGgGR0Bwdvv5P/JeaAdLpGgIR0Cm2s33QD3edX2UKGgGR0BymL5CWu5jaAdL0GgIR0Cm2tgMtseodX2UKGgGR0Bwl1U5uIhyaAdLiGgIR0Cm2vPVurIYdX2UKGgGR0B0w+lenhsJaAdL4GgIR0Cm2vezUqhEdX2UKGgGR0Bxe0DbJwKjaAdLmWgIR0Cm2yUTtb9qdX2UKGgGR0BxkF+F10T2aAdLq2gIR0Cm20T7uUlidX2UKGgGR0BzRnqX4TK1aAdLy2gIR0Cm27Ha37UHdX2UKGgGR0BxWZpKzzEraAdLoGgIR0Cm2+ubqhUSdX2UKGgGR0ByFIh/y5I6aAdLuWgIR0Cm3BGI0qH5dX2UKGgGR0Bxj6zkZJkHaAdLo2gIR0Cm3CIQ4CIUdX2UKGgGR0BzP4f4h2W6aAdLz2gIR0Cm3D0UO/cndX2UKGgGR0BwjPci4axYaAdLhGgIR0Cm3FNDMNc4dX2UKGgGR0BytkEwFkhBaAdLvmgIR0Cm3JLMC9ytdX2UKGgGR0BwWqKCQLeAaAdLpWgIR0Cm3LggxJumdX2UKGgGR0Bxnx28qWkaaAdLsmgIR0Cm3TwevIOpdX2UKGgGR0BzJDx4IKMOaAdLvWgIR0Cm3UQ/5ckddX2UKGgGR0Bwnww7DEWJaAdLkGgIR0Cm3UV1nuiOdX2UKGgGR0ByIsHObAk+aAdLtGgIR0Cm3WqiwjdIdX2UKGgGR0BxbTCO3lS1aAdLvGgIR0Cm3YPBSDRMdX2UKGgGR0BzYqur6tT2aAdL1mgIR0Cm3YltsN2DdX2UKGgGR0Bwk0B2fTTfaAdLr2gIR0Cm3ZCfQKKHdX2UKGgGR0BztbVYp2ECaAdLymgIR0Cm3Y37cfvGdX2UKGgGR0BxD+gZjx0/aAdLtGgIR0Cm3lEXLvCudX2UKGgGR0BxpR/6O5rhaAdLsGgIR0Cm3mXi704BdX2UKGgGR0ByEoyfthNNaAdL0GgIR0Cm3m1IRRMwdX2UKGgGR0ByIR8qnWJ8aAdLvWgIR0Cm3qdxp+MIdX2UKGgGR0ByNAGSpzcRaAdLx2gIR0Cm3rDWK/EgdX2UKGgGR0Bxpn0QK8cuaAdLn2gIR0Cm3q/pt78fdX2UKGgGR0Bw8K3LFGXpaAdLqmgIR0Cm3rVlXiiqdX2UKGgGR0BzNSe6I3zdaAdLxmgIR0Cm3tH1FpfydX2UKGgGR0Bw6HEjxCpnaAdLh2gIR0Cm3uhf8dgfdX2UKGgGR0Bw29y8zyjIaAdLlGgIR0Cm3vFbeMyadX2UKGgGR0Bx8aHxjJ+2aAdLimgIR0Cm3wD28IzFdX2UKGgGR0BxjG6cy31BaAdLimgIR0Cm3wdNvfj0dX2UKGgGR0BwRNruYx+KaAdLn2gIR0Cm3ytga3qidX2UKGgGR0BxNoUmD15CaAdLtWgIR0Cm3zMoUi6hdX2UKGgGR0ByroiKR+z/aAdLsmgIR0Cm3y8mKIi1dX2UKGgGR0BxJeRYA80UaAdLpGgIR0Cm3zt7a7EpdX2UKGgGR0BwYn6N2ki2aAdLomgIR0Cm39MLWqcWdX2UKGgGR0ByJVcZ9/jLaAdLj2gIR0Cm3/sQumJndX2UKGgGR0BxyvQQcxTLaAdLrGgIR0Cm4Ah4+r2hdX2UKGgGR0BvtbrPdEb6aAdLoGgIR0Cm4CLmhdt3dX2UKGgGR0BybFTn7pFDaAdLwGgIR0Cm4DREnb7CdX2UKGgGR0Bywcj8k2P1aAdLn2gIR0Cm4GYtpVS5dX2UKGgGR0BwzgwK0D2baAdLuGgIR0Cm4GfR3NcGdX2UKGgGR0BxZ7FsHjZMaAdLwWgIR0Cm4Hut4iX6dX2UKGgGR0BxjuL1mJ3xaAdLoWgIR0Cm4H/95yEMdX2UKGgGR0BzdkzfrKNiaAdLsmgIR0Cm4IzyJ9ApdX2UKGgGR0Bx8olyBClaaAdLlGgIR0Cm4JhDgIhRdX2UKGgGR0BzWf0Fr2xqaAdLxGgIR0Cm4J+fqX4TdX2UKGgGR0ByQQLYwqRVaAdLn2gIR0Cm4KuNHYpVdX2UKGgGR0Bx2HPVurIYaAdLqGgIR0Cm4M2v0RODdX2UKGgGR0Bw2XhzeXRgaAdLtmgIR0Cm4NynLq2SdX2UKGgGR0Bz3hUyYXwcaAdL2WgIR0Cm4QN70Fr3dX2UKGgGR0Bx9KFbmlqKaAdLq2gIR0Cm4Wpd8iOedX2UKGgGR0BwlaETQE6laAdLpGgIR0Cm4aYZVGTcdX2UKGgGR0ByOiITGo73aAdLuGgIR0Cm4bITwlSkdX2UKGgGR0BxjJSVGCqZaAdLkGgIR0Cm4biPZIxydX2UKGgGR0BxuB3PiT+vaAdLkmgIR0Cm4c8yFfzCdX2UKGgGR0Bx/XQswtaqaAdLw2gIR0Cm4dczqKP5dX2UKGgGR0Bw8ZMqSX+maAdLqWgIR0Cm4fKiGnGbdX2UKGgGR0ByqjmNipeeaAdLymgIR0Cm4g4FJQLvdX2UKGgGR0Bwrltygf2caAdLnWgIR0Cm4gyAH3UQdX2UKGgGR0BxyklNUOuraAdLqGgIR0Cm4hHeSB9UdX2UKGgGR0BzSPZElVtGaAdLrWgIR0Cm4ifwiJO4dX2UKGgGR0ByIKDQJHAiaAdLu2gIR0Cm4luRLbpNdX2UKGgGR0BylZD0Dlo2aAdL22gIR0Cm4nnX/YJ3dX2UKGgGR0Bzw0CLdepoaAdLwWgIR0Cm4o6W5YozdX2UKGgGR0BxHUHUtqYaaAdLt2gIR0Cm4rGVZ9uxdX2UKGgGR0Bytg/JNj9XaAdL1WgIR0Cm4tZ93KSxdX2UKGgGR0Bx77vSc9W7aAdLg2gIR0Cm4y3T3IuHdX2UKGgGR0By6OWE9MbnaAdLq2gIR0Cm40ADaGpNdX2UKGgGR0BwTi3pfQa8aAdLpmgIR0Cm40WLP2PDdX2UKGgGR0By1qokzGgjaAdLymgIR0Cm41FNlAeJdX2UKGgGR0BxaJ0W/JvHaAdLimgIR0Cm41qrzXjEdX2UKGgGR0BxXp0vGp++aAdLtWgIR0Cm42JsXSBtdX2UKGgGR0BzKEVafSQYaAdLu2gIR0Cm44vqkdmydX2UKGgGR0ByMOFj/dZaaAdLxmgIR0Cm46wRwqAjdX2UKGgGR0Bxmm0+kgwHaAdLqGgIR0Cm47laB7NTdX2UKGgGR0BybQ4ffXPJaAdLs2gIR0Cm47gq/dqMdX2UKGgGR0BxuiHRCx/vaAdLk2gIR0Cm473PiT+vdX2UKGgGR0BzhP1schkiaAdLtWgIR0Cm47/UF0PpdX2UKGgGR0BwK3ej2zv7aAdLkmgIR0Cm4+Xai9IxdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 630, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}