File size: 2,170 Bytes
2dcf679 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- scientific_papers
metrics:
- rouge
model-index:
- name: bart-base-finetuned-pubmed
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: scientific_papers
type: scientific_papers
args: pubmed
metrics:
- name: Rouge1
type: rouge
value: 9.1984
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-base-finetuned-pubmed
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the scientific_papers dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9804
- Rouge1: 9.1984
- Rouge2: 4.3091
- Rougel: 7.9739
- Rougelsum: 8.6759
- Gen Len: 20.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:------:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 2.2869 | 1.0 | 29981 | 2.1241 | 9.0852 | 4.1152 | 7.842 | 8.5395 | 20.0 |
| 2.1469 | 2.0 | 59962 | 2.0225 | 9.1609 | 4.2437 | 7.9311 | 8.6273 | 20.0 |
| 2.113 | 3.0 | 89943 | 1.9959 | 9.3086 | 4.3305 | 8.0363 | 8.7713 | 20.0 |
| 2.0632 | 4.0 | 119924 | 1.9804 | 9.1984 | 4.3091 | 7.9739 | 8.6759 | 20.0 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.1+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3
|