mspy commited on
Commit
68207ad
1 Parent(s): b633184

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,472 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-mpnet-base-v2
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - pearson_cosine
8
+ - spearman_cosine
9
+ - pearson_manhattan
10
+ - spearman_manhattan
11
+ - pearson_euclidean
12
+ - spearman_euclidean
13
+ - pearson_dot
14
+ - spearman_dot
15
+ - pearson_max
16
+ - spearman_max
17
+ pipeline_tag: sentence-similarity
18
+ tags:
19
+ - sentence-transformers
20
+ - sentence-similarity
21
+ - feature-extraction
22
+ - generated_from_trainer
23
+ - dataset_size:13063
24
+ - loss:CosineSimilarityLoss
25
+ widget:
26
+ - source_sentence: I cant wait to leave Chicago
27
+ sentences:
28
+ - This is the shit Chicago needs to be recognized for not Keef
29
+ - is candice singing again tonight
30
+ - half time Chelsea were losing 10
31
+ - source_sentence: Andre miller best lobbing pg in the game
32
+ sentences:
33
+ - Am I the only one who dont get Amber alert
34
+ - Backstrom hurt in warmup Harding could start
35
+ - Andre miller is even slower in person
36
+ - source_sentence: Bayless couldve dunked that from the free throw
37
+ sentences:
38
+ - but what great finger roll by Bayless
39
+ - Wow Bayless has to make EspnSCTop with that end of 3rd
40
+ - i mean calum u didnt follow
41
+ - source_sentence: Backstrom Hurt in warmups Harding gets the start
42
+ sentences:
43
+ - Should I go to Nashville or Chicago for my 17th birthday
44
+ - I hate Chelsea possibly more than most
45
+ - Of course Backstrom would get injured during warmups
46
+ - source_sentence: Calum I love you plz follow me
47
+ sentences:
48
+ - CALUM PLEASE BE MY FIRST CELEBRITY TO FOLLOW ME
49
+ - Walking around downtown Chicago in a dress and listening to the new Iggy Pop
50
+ - I think Candice has what it takes to win American Idol AND Angie too
51
+ model-index:
52
+ - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
53
+ results:
54
+ - task:
55
+ type: semantic-similarity
56
+ name: Semantic Similarity
57
+ dataset:
58
+ name: Unknown
59
+ type: unknown
60
+ metrics:
61
+ - type: pearson_cosine
62
+ value: 0.6949485250178733
63
+ name: Pearson Cosine
64
+ - type: spearman_cosine
65
+ value: 0.6626359968437283
66
+ name: Spearman Cosine
67
+ - type: pearson_manhattan
68
+ value: 0.688092975176289
69
+ name: Pearson Manhattan
70
+ - type: spearman_manhattan
71
+ value: 0.6630998028133662
72
+ name: Spearman Manhattan
73
+ - type: pearson_euclidean
74
+ value: 0.6880277270034267
75
+ name: Pearson Euclidean
76
+ - type: spearman_euclidean
77
+ value: 0.6626358741747785
78
+ name: Spearman Euclidean
79
+ - type: pearson_dot
80
+ value: 0.694948520847878
81
+ name: Pearson Dot
82
+ - type: spearman_dot
83
+ value: 0.6626359082695851
84
+ name: Spearman Dot
85
+ - type: pearson_max
86
+ value: 0.6949485250178733
87
+ name: Pearson Max
88
+ - type: spearman_max
89
+ value: 0.6630998028133662
90
+ name: Spearman Max
91
+ ---
92
+
93
+ # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
94
+
95
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
96
+
97
+ ## Model Details
98
+
99
+ ### Model Description
100
+ - **Model Type:** Sentence Transformer
101
+ - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 84f2bcc00d77236f9e89c8a360a00fb1139bf47d -->
102
+ - **Maximum Sequence Length:** 384 tokens
103
+ - **Output Dimensionality:** 768 tokens
104
+ - **Similarity Function:** Cosine Similarity
105
+ <!-- - **Training Dataset:** Unknown -->
106
+ <!-- - **Language:** Unknown -->
107
+ <!-- - **License:** Unknown -->
108
+
109
+ ### Model Sources
110
+
111
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
112
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
113
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
114
+
115
+ ### Full Model Architecture
116
+
117
+ ```
118
+ SentenceTransformer(
119
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
120
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
121
+ (2): Normalize()
122
+ )
123
+ ```
124
+
125
+ ## Usage
126
+
127
+ ### Direct Usage (Sentence Transformers)
128
+
129
+ First install the Sentence Transformers library:
130
+
131
+ ```bash
132
+ pip install -U sentence-transformers
133
+ ```
134
+
135
+ Then you can load this model and run inference.
136
+ ```python
137
+ from sentence_transformers import SentenceTransformer
138
+
139
+ # Download from the 🤗 Hub
140
+ model = SentenceTransformer("mspy/twitter-paraphrase-embeddings")
141
+ # Run inference
142
+ sentences = [
143
+ 'Calum I love you plz follow me',
144
+ 'CALUM PLEASE BE MY FIRST CELEBRITY TO FOLLOW ME',
145
+ 'Walking around downtown Chicago in a dress and listening to the new Iggy Pop',
146
+ ]
147
+ embeddings = model.encode(sentences)
148
+ print(embeddings.shape)
149
+ # [3, 768]
150
+
151
+ # Get the similarity scores for the embeddings
152
+ similarities = model.similarity(embeddings, embeddings)
153
+ print(similarities.shape)
154
+ # [3, 3]
155
+ ```
156
+
157
+ <!--
158
+ ### Direct Usage (Transformers)
159
+
160
+ <details><summary>Click to see the direct usage in Transformers</summary>
161
+
162
+ </details>
163
+ -->
164
+
165
+ <!--
166
+ ### Downstream Usage (Sentence Transformers)
167
+
168
+ You can finetune this model on your own dataset.
169
+
170
+ <details><summary>Click to expand</summary>
171
+
172
+ </details>
173
+ -->
174
+
175
+ <!--
176
+ ### Out-of-Scope Use
177
+
178
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
179
+ -->
180
+
181
+ ## Evaluation
182
+
183
+ ### Metrics
184
+
185
+ #### Semantic Similarity
186
+
187
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
188
+
189
+ | Metric | Value |
190
+ |:--------------------|:-----------|
191
+ | pearson_cosine | 0.6949 |
192
+ | **spearman_cosine** | **0.6626** |
193
+ | pearson_manhattan | 0.6881 |
194
+ | spearman_manhattan | 0.6631 |
195
+ | pearson_euclidean | 0.688 |
196
+ | spearman_euclidean | 0.6626 |
197
+ | pearson_dot | 0.6949 |
198
+ | spearman_dot | 0.6626 |
199
+ | pearson_max | 0.6949 |
200
+ | spearman_max | 0.6631 |
201
+
202
+ <!--
203
+ ## Bias, Risks and Limitations
204
+
205
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
206
+ -->
207
+
208
+ <!--
209
+ ### Recommendations
210
+
211
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
212
+ -->
213
+
214
+ ## Training Details
215
+
216
+ ### Training Dataset
217
+
218
+ #### Unnamed Dataset
219
+
220
+
221
+ * Size: 13,063 training samples
222
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
223
+ * Approximate statistics based on the first 1000 samples:
224
+ | | sentence1 | sentence2 | label |
225
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
226
+ | type | string | string | float |
227
+ | details | <ul><li>min: 7 tokens</li><li>mean: 11.16 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.31 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.33</li><li>max: 1.0</li></ul> |
228
+ * Samples:
229
+ | sentence1 | sentence2 | label |
230
+ |:------------------------------------------------------|:-------------------------------------------------------------------|:-----------------|
231
+ | <code>EJ Manuel the 1st QB to go in this draft</code> | <code>But my bro from the 757 EJ Manuel is the 1st QB gone</code> | <code>1.0</code> |
232
+ | <code>EJ Manuel the 1st QB to go in this draft</code> | <code>Can believe EJ Manuel went as the 1st QB in the draft</code> | <code>1.0</code> |
233
+ | <code>EJ Manuel the 1st QB to go in this draft</code> | <code>EJ MANUEL IS THE 1ST QB what</code> | <code>0.6</code> |
234
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
235
+ ```json
236
+ {
237
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
238
+ }
239
+ ```
240
+
241
+ ### Evaluation Dataset
242
+
243
+ #### Unnamed Dataset
244
+
245
+
246
+ * Size: 4,727 evaluation samples
247
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
248
+ * Approximate statistics based on the first 1000 samples:
249
+ | | sentence1 | sentence2 | label |
250
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
251
+ | type | string | string | float |
252
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.04 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.22 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.33</li><li>max: 1.0</li></ul> |
253
+ * Samples:
254
+ | sentence1 | sentence2 | label |
255
+ |:---------------------------------------------------------------|:------------------------------------------------------------------|:-----------------|
256
+ | <code>A Walk to Remember is the definition of true love</code> | <code>A Walk to Remember is on and Im in town and Im upset</code> | <code>0.2</code> |
257
+ | <code>A Walk to Remember is the definition of true love</code> | <code>A Walk to Remember is the cutest thing</code> | <code>0.6</code> |
258
+ | <code>A Walk to Remember is the definition of true love</code> | <code>A walk to remember is on ABC family youre welcome</code> | <code>0.2</code> |
259
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
260
+ ```json
261
+ {
262
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
263
+ }
264
+ ```
265
+
266
+ ### Training Hyperparameters
267
+ #### Non-Default Hyperparameters
268
+
269
+ - `eval_strategy`: steps
270
+ - `gradient_accumulation_steps`: 2
271
+ - `learning_rate`: 2e-05
272
+ - `num_train_epochs`: 4
273
+ - `warmup_ratio`: 0.1
274
+ - `fp16`: True
275
+
276
+ #### All Hyperparameters
277
+ <details><summary>Click to expand</summary>
278
+
279
+ - `overwrite_output_dir`: False
280
+ - `do_predict`: False
281
+ - `eval_strategy`: steps
282
+ - `prediction_loss_only`: True
283
+ - `per_device_train_batch_size`: 8
284
+ - `per_device_eval_batch_size`: 8
285
+ - `per_gpu_train_batch_size`: None
286
+ - `per_gpu_eval_batch_size`: None
287
+ - `gradient_accumulation_steps`: 2
288
+ - `eval_accumulation_steps`: None
289
+ - `torch_empty_cache_steps`: None
290
+ - `learning_rate`: 2e-05
291
+ - `weight_decay`: 0.0
292
+ - `adam_beta1`: 0.9
293
+ - `adam_beta2`: 0.999
294
+ - `adam_epsilon`: 1e-08
295
+ - `max_grad_norm`: 1.0
296
+ - `num_train_epochs`: 4
297
+ - `max_steps`: -1
298
+ - `lr_scheduler_type`: linear
299
+ - `lr_scheduler_kwargs`: {}
300
+ - `warmup_ratio`: 0.1
301
+ - `warmup_steps`: 0
302
+ - `log_level`: passive
303
+ - `log_level_replica`: warning
304
+ - `log_on_each_node`: True
305
+ - `logging_nan_inf_filter`: True
306
+ - `save_safetensors`: True
307
+ - `save_on_each_node`: False
308
+ - `save_only_model`: False
309
+ - `restore_callback_states_from_checkpoint`: False
310
+ - `no_cuda`: False
311
+ - `use_cpu`: False
312
+ - `use_mps_device`: False
313
+ - `seed`: 42
314
+ - `data_seed`: None
315
+ - `jit_mode_eval`: False
316
+ - `use_ipex`: False
317
+ - `bf16`: False
318
+ - `fp16`: True
319
+ - `fp16_opt_level`: O1
320
+ - `half_precision_backend`: auto
321
+ - `bf16_full_eval`: False
322
+ - `fp16_full_eval`: False
323
+ - `tf32`: None
324
+ - `local_rank`: 0
325
+ - `ddp_backend`: None
326
+ - `tpu_num_cores`: None
327
+ - `tpu_metrics_debug`: False
328
+ - `debug`: []
329
+ - `dataloader_drop_last`: False
330
+ - `dataloader_num_workers`: 0
331
+ - `dataloader_prefetch_factor`: None
332
+ - `past_index`: -1
333
+ - `disable_tqdm`: False
334
+ - `remove_unused_columns`: True
335
+ - `label_names`: None
336
+ - `load_best_model_at_end`: False
337
+ - `ignore_data_skip`: False
338
+ - `fsdp`: []
339
+ - `fsdp_min_num_params`: 0
340
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
341
+ - `fsdp_transformer_layer_cls_to_wrap`: None
342
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
343
+ - `deepspeed`: None
344
+ - `label_smoothing_factor`: 0.0
345
+ - `optim`: adamw_torch
346
+ - `optim_args`: None
347
+ - `adafactor`: False
348
+ - `group_by_length`: False
349
+ - `length_column_name`: length
350
+ - `ddp_find_unused_parameters`: None
351
+ - `ddp_bucket_cap_mb`: None
352
+ - `ddp_broadcast_buffers`: False
353
+ - `dataloader_pin_memory`: True
354
+ - `dataloader_persistent_workers`: False
355
+ - `skip_memory_metrics`: True
356
+ - `use_legacy_prediction_loop`: False
357
+ - `push_to_hub`: False
358
+ - `resume_from_checkpoint`: None
359
+ - `hub_model_id`: None
360
+ - `hub_strategy`: every_save
361
+ - `hub_private_repo`: False
362
+ - `hub_always_push`: False
363
+ - `gradient_checkpointing`: False
364
+ - `gradient_checkpointing_kwargs`: None
365
+ - `include_inputs_for_metrics`: False
366
+ - `eval_do_concat_batches`: True
367
+ - `fp16_backend`: auto
368
+ - `push_to_hub_model_id`: None
369
+ - `push_to_hub_organization`: None
370
+ - `mp_parameters`:
371
+ - `auto_find_batch_size`: False
372
+ - `full_determinism`: False
373
+ - `torchdynamo`: None
374
+ - `ray_scope`: last
375
+ - `ddp_timeout`: 1800
376
+ - `torch_compile`: False
377
+ - `torch_compile_backend`: None
378
+ - `torch_compile_mode`: None
379
+ - `dispatch_batches`: None
380
+ - `split_batches`: None
381
+ - `include_tokens_per_second`: False
382
+ - `include_num_input_tokens_seen`: False
383
+ - `neftune_noise_alpha`: None
384
+ - `optim_target_modules`: None
385
+ - `batch_eval_metrics`: False
386
+ - `eval_on_start`: False
387
+ - `eval_use_gather_object`: False
388
+ - `batch_sampler`: batch_sampler
389
+ - `multi_dataset_batch_sampler`: proportional
390
+
391
+ </details>
392
+
393
+ ### Training Logs
394
+ | Epoch | Step | Training Loss | loss | spearman_cosine |
395
+ |:------:|:----:|:-------------:|:------:|:---------------:|
396
+ | 0.1225 | 100 | - | 0.0729 | 0.6058 |
397
+ | 0.2449 | 200 | - | 0.0646 | 0.6340 |
398
+ | 0.3674 | 300 | - | 0.0627 | 0.6397 |
399
+ | 0.4899 | 400 | - | 0.0621 | 0.6472 |
400
+ | 0.6124 | 500 | 0.0627 | 0.0626 | 0.6496 |
401
+ | 0.7348 | 600 | - | 0.0621 | 0.6446 |
402
+ | 0.8573 | 700 | - | 0.0593 | 0.6695 |
403
+ | 0.9798 | 800 | - | 0.0636 | 0.6440 |
404
+ | 1.1023 | 900 | - | 0.0618 | 0.6525 |
405
+ | 1.2247 | 1000 | 0.0383 | 0.0604 | 0.6639 |
406
+ | 1.3472 | 1100 | - | 0.0608 | 0.6590 |
407
+ | 1.4697 | 1200 | - | 0.0620 | 0.6504 |
408
+ | 1.5922 | 1300 | - | 0.0617 | 0.6467 |
409
+ | 1.7146 | 1400 | - | 0.0615 | 0.6574 |
410
+ | 1.8371 | 1500 | 0.0293 | 0.0622 | 0.6536 |
411
+ | 1.9596 | 1600 | - | 0.0609 | 0.6599 |
412
+ | 2.0821 | 1700 | - | 0.0605 | 0.6658 |
413
+ | 2.2045 | 1800 | - | 0.0615 | 0.6588 |
414
+ | 2.3270 | 1900 | - | 0.0615 | 0.6575 |
415
+ | 2.4495 | 2000 | 0.0215 | 0.0614 | 0.6598 |
416
+ | 2.5720 | 2100 | - | 0.0603 | 0.6681 |
417
+ | 2.6944 | 2200 | - | 0.0606 | 0.6669 |
418
+ | 2.8169 | 2300 | - | 0.0605 | 0.6642 |
419
+ | 2.9394 | 2400 | - | 0.0606 | 0.6630 |
420
+ | 3.0618 | 2500 | 0.018 | 0.0611 | 0.6616 |
421
+ | 3.1843 | 2600 | - | 0.0611 | 0.6619 |
422
+ | 3.3068 | 2700 | - | 0.0611 | 0.6608 |
423
+ | 3.4293 | 2800 | - | 0.0608 | 0.6632 |
424
+ | 3.5517 | 2900 | - | 0.0608 | 0.6623 |
425
+ | 3.6742 | 3000 | 0.014 | 0.0615 | 0.6596 |
426
+ | 3.7967 | 3100 | - | 0.0612 | 0.6616 |
427
+ | 3.9192 | 3200 | - | 0.0610 | 0.6626 |
428
+
429
+
430
+ ### Framework Versions
431
+ - Python: 3.10.14
432
+ - Sentence Transformers: 3.0.1
433
+ - Transformers: 4.43.3
434
+ - PyTorch: 2.4.0+cu121
435
+ - Accelerate: 0.33.0
436
+ - Datasets: 2.20.0
437
+ - Tokenizers: 0.19.1
438
+
439
+ ## Citation
440
+
441
+ ### BibTeX
442
+
443
+ #### Sentence Transformers
444
+ ```bibtex
445
+ @inproceedings{reimers-2019-sentence-bert,
446
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
447
+ author = "Reimers, Nils and Gurevych, Iryna",
448
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
449
+ month = "11",
450
+ year = "2019",
451
+ publisher = "Association for Computational Linguistics",
452
+ url = "https://arxiv.org/abs/1908.10084",
453
+ }
454
+ ```
455
+
456
+ <!--
457
+ ## Glossary
458
+
459
+ *Clearly define terms in order to be accessible across audiences.*
460
+ -->
461
+
462
+ <!--
463
+ ## Model Card Authors
464
+
465
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
466
+ -->
467
+
468
+ <!--
469
+ ## Model Card Contact
470
+
471
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
472
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "output/mpnet-base-paraphrase-identification",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.43.3",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.43.3",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:358ee68ffd9268b5aa6d74febe2d85365b7c897749b535a908e17bd2aadb5365
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 384,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff