---
base_model: sentence-transformers/all-mpnet-base-v2
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:13063
- loss:CosineSimilarityLoss
widget:
- source_sentence: I cant wait to leave Chicago
sentences:
- This is the shit Chicago needs to be recognized for not Keef
- is candice singing again tonight
- half time Chelsea were losing 10
- source_sentence: Andre miller best lobbing pg in the game
sentences:
- Am I the only one who dont get Amber alert
- Backstrom hurt in warmup Harding could start
- Andre miller is even slower in person
- source_sentence: Bayless couldve dunked that from the free throw
sentences:
- but what great finger roll by Bayless
- Wow Bayless has to make EspnSCTop with that end of 3rd
- i mean calum u didnt follow
- source_sentence: Backstrom Hurt in warmups Harding gets the start
sentences:
- Should I go to Nashville or Chicago for my 17th birthday
- I hate Chelsea possibly more than most
- Of course Backstrom would get injured during warmups
- source_sentence: Calum I love you plz follow me
sentences:
- CALUM PLEASE BE MY FIRST CELEBRITY TO FOLLOW ME
- Walking around downtown Chicago in a dress and listening to the new Iggy Pop
- I think Candice has what it takes to win American Idol AND Angie too
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: Unknown
type: unknown
metrics:
- type: pearson_cosine
value: 0.6949485250178733
name: Pearson Cosine
- type: spearman_cosine
value: 0.6626359968437283
name: Spearman Cosine
- type: pearson_manhattan
value: 0.688092975176289
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6630998028133662
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.6880277270034267
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6626358741747785
name: Spearman Euclidean
- type: pearson_dot
value: 0.694948520847878
name: Pearson Dot
- type: spearman_dot
value: 0.6626359082695851
name: Spearman Dot
- type: pearson_max
value: 0.6949485250178733
name: Pearson Max
- type: spearman_max
value: 0.6630998028133662
name: Spearman Max
---
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("mspy/twitter-paraphrase-embeddings")
# Run inference
sentences = [
'Calum I love you plz follow me',
'CALUM PLEASE BE MY FIRST CELEBRITY TO FOLLOW ME',
'Walking around downtown Chicago in a dress and listening to the new Iggy Pop',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.6949 |
| **spearman_cosine** | **0.6626** |
| pearson_manhattan | 0.6881 |
| spearman_manhattan | 0.6631 |
| pearson_euclidean | 0.688 |
| spearman_euclidean | 0.6626 |
| pearson_dot | 0.6949 |
| spearman_dot | 0.6626 |
| pearson_max | 0.6949 |
| spearman_max | 0.6631 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 13,063 training samples
* Columns: sentence1
, sentence2
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details |
EJ Manuel the 1st QB to go in this draft
| But my bro from the 757 EJ Manuel is the 1st QB gone
| 1.0
|
| EJ Manuel the 1st QB to go in this draft
| Can believe EJ Manuel went as the 1st QB in the draft
| 1.0
|
| EJ Manuel the 1st QB to go in this draft
| EJ MANUEL IS THE 1ST QB what
| 0.6
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 4,727 evaluation samples
* Columns: sentence1
, sentence2
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | A Walk to Remember is the definition of true love
| A Walk to Remember is on and Im in town and Im upset
| 0.2
|
| A Walk to Remember is the definition of true love
| A Walk to Remember is the cutest thing
| 0.6
|
| A Walk to Remember is the definition of true love
| A walk to remember is on ABC family youre welcome
| 0.2
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `gradient_accumulation_steps`: 2
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters