--- library_name: transformers datasets: - llm-jp/magpie-sft-v1.0 base_model: - google/gemma-2-9b license: gemma language: - ja - en --- # Model Card for Model ID ## Model Details ### Model Description このモデルはgemma-2-9bをbitsandbytesで4bit量子化し、llm-jp/magpie-sft-v0.1を用いQloraでInstruction Turnnigしたモデルです。 loraアダプターはmssfj/gemma-2-9b-4bit-magpieになります。 以下のチャットテンプレートを定義しています。 {%- for message in messages %} {{ message.role }}: {{ message.content }} {%- endfor %}{% if add_generation_prompt %} assistant: {% endif %} This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig import torch from peft import PeftModel, PeftConfig # モデル名 model_name = "mssfj/gemma-2-9b-bnb-4bit-chat-template" lora_weight = "mssfj/gemma-2-9b-4bit-magpie" # 量子化設定 quantization_config = BitsAndBytesConfig( load_in_4bit=False, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=False ) # ベースモデルのロード base_model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=quantization_config, device_map="auto" ) # QLoRA済みモデルの適用 model = PeftModel.from_pretrained(base_model, lora_weight) # トークナイザのロード tokenizer = AutoTokenizer.from_pretrained(model_name) input="""日本で一番高い山は? """ messages = [ {"role": "system", "content": """あなたは誠実で優秀な日本人のアシスタントです。あなたはユーザと日本語で会話しています。アシスタントは以下の原則を忠実に守り丁寧に回答します。 - 日本語で簡潔に回答する - 回答は必ず完結した文で終える - 質問の文脈に沿った自然な応答をする """}, {"role": "user", "content": input}, ] # チャットテンプレートを適用 input_ids = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt" ).to(model.device) outputs = model.generate( input_ids, max_new_tokens=512, temperature=0.2, do_sample=True, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, early_stopping=True, ) response = tokenizer.decode(outputs[0][input_ids.shape[1]:], skip_special_tokens=True) ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]