Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- .ipynb_checkpoints/README-checkpoint.md +414 -0
- .ipynb_checkpoints/config-checkpoint.json +50 -0
- .ipynb_checkpoints/configuration-checkpoint.py +145 -0
- .ipynb_checkpoints/modules-checkpoint.json +14 -0
- 1_Pooling/config.json +10 -0
- README.md +421 -0
- config.json +50 -0
- config_sentence_transformers.json +10 -0
- configuration.py +145 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +54 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
.ipynb_checkpoints/README-checkpoint.md
ADDED
@@ -0,0 +1,414 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:574325
|
8 |
+
- loss:MultipleNegativesRankingLoss
|
9 |
+
- loss:CosineSimilarityLoss
|
10 |
+
base_model: upskyy/gte-base-korean
|
11 |
+
widget:
|
12 |
+
- source_sentence: 그것은 도덕적으로 강요하지 않는다.
|
13 |
+
sentences:
|
14 |
+
- 그것은 법을 제정하고 있다.
|
15 |
+
- 시리아 야당은 회담에 참석할 것을 촉구했다.
|
16 |
+
- 한 젊은이가 기타를 연주하면서 노래를 부르고 있다.
|
17 |
+
- source_sentence: 한 여성이 무대에서 플루트를 연주하고 있다.
|
18 |
+
sentences:
|
19 |
+
- 여자가 플루트를 연주하고 있다.
|
20 |
+
- 인도, 사이클론 파일린에 대한 적색 경보 발령
|
21 |
+
- 반 데르 메르웨는 가이게스의 형을 5년 징역형으로 중지했다.
|
22 |
+
- source_sentence: 적어도 나는 이 남자가 자신의 범죄를 이해한다고 확신할 수 있었다.
|
23 |
+
sentences:
|
24 |
+
- 티셔츠와 반바지를 입고 티에서 축구를 걷어차는 남자
|
25 |
+
- 나는 그가 무엇을 잘못했는지 전혀 모른다고 생각하기 시작했다.
|
26 |
+
- 남자는 자신이 한 일을 알고 있었다.
|
27 |
+
- source_sentence: 사람은 다리로 올라갑니다.
|
28 |
+
sentences:
|
29 |
+
- 한 남자가 땅에 누워 있다.
|
30 |
+
- 자전거를 타는 한 무리의 사람들이 거리에서 돌아선다.
|
31 |
+
- 공중으로 뛰어드는 남자
|
32 |
+
- source_sentence: 모자를 쓴 남자와 여자가 거리에서 악기를 연주하고 있다.
|
33 |
+
sentences:
|
34 |
+
- 사람은 수직 물체에 받쳐진다.
|
35 |
+
- 두 남자가 길가에 서 있다.
|
36 |
+
- 두 사람이 모자를 쓰고 있다.
|
37 |
+
pipeline_tag: sentence-similarity
|
38 |
+
library_name: sentence-transformers
|
39 |
+
metrics:
|
40 |
+
- pearson_cosine
|
41 |
+
- spearman_cosine
|
42 |
+
model-index:
|
43 |
+
- name: SentenceTransformer based on upskyy/gte-base-korean
|
44 |
+
results:
|
45 |
+
- task:
|
46 |
+
type: semantic-similarity
|
47 |
+
name: Semantic Similarity
|
48 |
+
dataset:
|
49 |
+
name: sts dev
|
50 |
+
type: sts-dev
|
51 |
+
metrics:
|
52 |
+
- type: pearson_cosine
|
53 |
+
value: 0.868140244252358
|
54 |
+
name: Pearson Cosine
|
55 |
+
- type: spearman_cosine
|
56 |
+
value: 0.8689161244129222
|
57 |
+
name: Spearman Cosine
|
58 |
+
---
|
59 |
+
|
60 |
+
# SentenceTransformer based on upskyy/gte-base-korean
|
61 |
+
|
62 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [upskyy/gte-base-korean](https://huggingface.co/upskyy/gte-base-korean). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
63 |
+
|
64 |
+
## Model Details
|
65 |
+
|
66 |
+
### Model Description
|
67 |
+
- **Model Type:** Sentence Transformer
|
68 |
+
- **Base model:** [upskyy/gte-base-korean](https://huggingface.co/upskyy/gte-base-korean) <!-- at revision c1a18ef8326962b57c63e2d306a724a925913dfe -->
|
69 |
+
- **Maximum Sequence Length:** 8192 tokens
|
70 |
+
- **Output Dimensionality:** 768 dimensions
|
71 |
+
- **Similarity Function:** Cosine Similarity
|
72 |
+
<!-- - **Training Dataset:** Unknown -->
|
73 |
+
<!-- - **Language:** Unknown -->
|
74 |
+
<!-- - **License:** Unknown -->
|
75 |
+
|
76 |
+
### Model Sources
|
77 |
+
|
78 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
79 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
80 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
81 |
+
|
82 |
+
### Full Model Architecture
|
83 |
+
|
84 |
+
```
|
85 |
+
SentenceTransformer(
|
86 |
+
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
|
87 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
88 |
+
)
|
89 |
+
```
|
90 |
+
|
91 |
+
## Usage
|
92 |
+
|
93 |
+
### Direct Usage (Sentence Transformers)
|
94 |
+
|
95 |
+
First install the Sentence Transformers library:
|
96 |
+
|
97 |
+
```bash
|
98 |
+
pip install -U sentence-transformers
|
99 |
+
```
|
100 |
+
|
101 |
+
Then you can load this model and run inference.
|
102 |
+
```python
|
103 |
+
from sentence_transformers import SentenceTransformer
|
104 |
+
|
105 |
+
# Download from the 🤗 Hub
|
106 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
107 |
+
# Run inference
|
108 |
+
sentences = [
|
109 |
+
'모자를 쓴 남자와 여자가 거리에서 악기를 연주하고 있다.',
|
110 |
+
'두 사람이 모자를 쓰고 있다.',
|
111 |
+
'두 남자가 길가에 서 있다.',
|
112 |
+
]
|
113 |
+
embeddings = model.encode(sentences)
|
114 |
+
print(embeddings.shape)
|
115 |
+
# [3, 768]
|
116 |
+
|
117 |
+
# Get the similarity scores for the embeddings
|
118 |
+
similarities = model.similarity(embeddings, embeddings)
|
119 |
+
print(similarities.shape)
|
120 |
+
# [3, 3]
|
121 |
+
```
|
122 |
+
|
123 |
+
<!--
|
124 |
+
### Direct Usage (Transformers)
|
125 |
+
|
126 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
127 |
+
|
128 |
+
</details>
|
129 |
+
-->
|
130 |
+
|
131 |
+
<!--
|
132 |
+
### Downstream Usage (Sentence Transformers)
|
133 |
+
|
134 |
+
You can finetune this model on your own dataset.
|
135 |
+
|
136 |
+
<details><summary>Click to expand</summary>
|
137 |
+
|
138 |
+
</details>
|
139 |
+
-->
|
140 |
+
|
141 |
+
<!--
|
142 |
+
### Out-of-Scope Use
|
143 |
+
|
144 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
145 |
+
-->
|
146 |
+
|
147 |
+
## Evaluation
|
148 |
+
|
149 |
+
### Metrics
|
150 |
+
|
151 |
+
#### Semantic Similarity
|
152 |
+
|
153 |
+
* Dataset: `sts-dev`
|
154 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
155 |
+
|
156 |
+
| Metric | Value |
|
157 |
+
|:--------------------|:-----------|
|
158 |
+
| pearson_cosine | 0.8681 |
|
159 |
+
| **spearman_cosine** | **0.8689** |
|
160 |
+
|
161 |
+
<!--
|
162 |
+
## Bias, Risks and Limitations
|
163 |
+
|
164 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
165 |
+
-->
|
166 |
+
|
167 |
+
<!--
|
168 |
+
### Recommendations
|
169 |
+
|
170 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
171 |
+
-->
|
172 |
+
|
173 |
+
## Training Details
|
174 |
+
|
175 |
+
### Training Datasets
|
176 |
+
|
177 |
+
#### Unnamed Dataset
|
178 |
+
|
179 |
+
|
180 |
+
* Size: 568,576 training samples
|
181 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
|
182 |
+
* Approximate statistics based on the first 1000 samples:
|
183 |
+
| | sentence_0 | sentence_1 | sentence_2 |
|
184 |
+
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
185 |
+
| type | string | string | string |
|
186 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 19.18 tokens</li><li>max: 111 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 20.1 tokens</li><li>max: 129 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.51 tokens</li><li>max: 42 tokens</li></ul> |
|
187 |
+
* Samples:
|
188 |
+
| sentence_0 | sentence_1 | sentence_2 |
|
189 |
+
|:----------------------------------------------------------|:------------------------------------------------------------|:------------------------------------------------|
|
190 |
+
| <code>나는 솔직히 말해서 가게에서 그것을 산 사람은 그 남자가 아니라고 말할 것이다.</code> | <code>화학자 가게에서 스트리크닌을 산 사람은 그가 아니었다는 것을 인정하겠다.</code> | <code>난 아무것도 인정하지 않을 거야, 이 모든 대화는 무의미해!</code> |
|
191 |
+
| <code>네 명의 여성이 있다.</code> | <code>검은색과 노란색 드레스를 입은 세 명의 여성과 오렌지색 머리를 가진 한 명의 여성.</code> | <code>신부 들러리 세 명이 모두 어울리지 않는 드레스를 입고 있다.</code> |
|
192 |
+
| <code>드류는 빤히 쳐다보면서 다른 사람을 생각하고 있었다.</code> | <code>하지만 다른 하나는...... 드류가 빤히 쳐다보았다.</code> | <code>드류는 다른 사람을 걱정하지 않았다.</code> |
|
193 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
194 |
+
```json
|
195 |
+
{
|
196 |
+
"scale": 20.0,
|
197 |
+
"similarity_fct": "cos_sim"
|
198 |
+
}
|
199 |
+
```
|
200 |
+
|
201 |
+
#### Unnamed Dataset
|
202 |
+
|
203 |
+
|
204 |
+
* Size: 5,749 training samples
|
205 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
206 |
+
* Approximate statistics based on the first 1000 samples:
|
207 |
+
| | sentence_0 | sentence_1 | label |
|
208 |
+
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
209 |
+
| type | string | string | float |
|
210 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 19.1 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 19.15 tokens</li><li>max: 83 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.53</li><li>max: 1.0</li></ul> |
|
211 |
+
* Samples:
|
212 |
+
| sentence_0 | sentence_1 | label |
|
213 |
+
|:---------------------------------------|:--------------------------------------|:-----------------|
|
214 |
+
| <code>�� 남자가 바이올린을 연주하고 있다.</code> | <code>아기가 웃고 기어가고 있다.</code> | <code>0.0</code> |
|
215 |
+
| <code>구스마오는 동티모르 선거에서 권력을 강화한다.</code> | <code>롬니가 선거에서 승리할 경우 대법원의 가능성</code> | <code>0.0</code> |
|
216 |
+
| <code>그게 아니었다는 것만 빼면.</code> | <code>그들이 할 수 없다는 것 빼고는...</code> | <code>0.2</code> |
|
217 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
218 |
+
```json
|
219 |
+
{
|
220 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
221 |
+
}
|
222 |
+
```
|
223 |
+
|
224 |
+
### Training Hyperparameters
|
225 |
+
#### Non-Default Hyperparameters
|
226 |
+
|
227 |
+
- `eval_strategy`: steps
|
228 |
+
- `num_train_epochs`: 1
|
229 |
+
- `batch_sampler`: no_duplicates
|
230 |
+
- `multi_dataset_batch_sampler`: round_robin
|
231 |
+
|
232 |
+
#### All Hyperparameters
|
233 |
+
<details><summary>Click to expand</summary>
|
234 |
+
|
235 |
+
- `overwrite_output_dir`: False
|
236 |
+
- `do_predict`: False
|
237 |
+
- `eval_strategy`: steps
|
238 |
+
- `prediction_loss_only`: True
|
239 |
+
- `per_device_train_batch_size`: 8
|
240 |
+
- `per_device_eval_batch_size`: 8
|
241 |
+
- `per_gpu_train_batch_size`: None
|
242 |
+
- `per_gpu_eval_batch_size`: None
|
243 |
+
- `gradient_accumulation_steps`: 1
|
244 |
+
- `eval_accumulation_steps`: None
|
245 |
+
- `torch_empty_cache_steps`: None
|
246 |
+
- `learning_rate`: 5e-05
|
247 |
+
- `weight_decay`: 0.0
|
248 |
+
- `adam_beta1`: 0.9
|
249 |
+
- `adam_beta2`: 0.999
|
250 |
+
- `adam_epsilon`: 1e-08
|
251 |
+
- `max_grad_norm`: 1.0
|
252 |
+
- `num_train_epochs`: 1
|
253 |
+
- `max_steps`: -1
|
254 |
+
- `lr_scheduler_type`: linear
|
255 |
+
- `lr_scheduler_kwargs`: {}
|
256 |
+
- `warmup_ratio`: 0.0
|
257 |
+
- `warmup_steps`: 0
|
258 |
+
- `log_level`: passive
|
259 |
+
- `log_level_replica`: warning
|
260 |
+
- `log_on_each_node`: True
|
261 |
+
- `logging_nan_inf_filter`: True
|
262 |
+
- `save_safetensors`: True
|
263 |
+
- `save_on_each_node`: False
|
264 |
+
- `save_only_model`: False
|
265 |
+
- `restore_callback_states_from_checkpoint`: False
|
266 |
+
- `no_cuda`: False
|
267 |
+
- `use_cpu`: False
|
268 |
+
- `use_mps_device`: False
|
269 |
+
- `seed`: 42
|
270 |
+
- `data_seed`: None
|
271 |
+
- `jit_mode_eval`: False
|
272 |
+
- `use_ipex`: False
|
273 |
+
- `bf16`: False
|
274 |
+
- `fp16`: False
|
275 |
+
- `fp16_opt_level`: O1
|
276 |
+
- `half_precision_backend`: auto
|
277 |
+
- `bf16_full_eval`: False
|
278 |
+
- `fp16_full_eval`: False
|
279 |
+
- `tf32`: None
|
280 |
+
- `local_rank`: 0
|
281 |
+
- `ddp_backend`: None
|
282 |
+
- `tpu_num_cores`: None
|
283 |
+
- `tpu_metrics_debug`: False
|
284 |
+
- `debug`: []
|
285 |
+
- `dataloader_drop_last`: False
|
286 |
+
- `dataloader_num_workers`: 0
|
287 |
+
- `dataloader_prefetch_factor`: None
|
288 |
+
- `past_index`: -1
|
289 |
+
- `disable_tqdm`: False
|
290 |
+
- `remove_unused_columns`: True
|
291 |
+
- `label_names`: None
|
292 |
+
- `load_best_model_at_end`: False
|
293 |
+
- `ignore_data_skip`: False
|
294 |
+
- `fsdp`: []
|
295 |
+
- `fsdp_min_num_params`: 0
|
296 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
297 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
298 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
299 |
+
- `deepspeed`: None
|
300 |
+
- `label_smoothing_factor`: 0.0
|
301 |
+
- `optim`: adamw_torch
|
302 |
+
- `optim_args`: None
|
303 |
+
- `adafactor`: False
|
304 |
+
- `group_by_length`: False
|
305 |
+
- `length_column_name`: length
|
306 |
+
- `ddp_find_unused_parameters`: None
|
307 |
+
- `ddp_bucket_cap_mb`: None
|
308 |
+
- `ddp_broadcast_buffers`: False
|
309 |
+
- `dataloader_pin_memory`: True
|
310 |
+
- `dataloader_persistent_workers`: False
|
311 |
+
- `skip_memory_metrics`: True
|
312 |
+
- `use_legacy_prediction_loop`: False
|
313 |
+
- `push_to_hub`: False
|
314 |
+
- `resume_from_checkpoint`: None
|
315 |
+
- `hub_model_id`: None
|
316 |
+
- `hub_strategy`: every_save
|
317 |
+
- `hub_private_repo`: False
|
318 |
+
- `hub_always_push`: False
|
319 |
+
- `gradient_checkpointing`: False
|
320 |
+
- `gradient_checkpointing_kwargs`: None
|
321 |
+
- `include_inputs_for_metrics`: False
|
322 |
+
- `include_for_metrics`: []
|
323 |
+
- `eval_do_concat_batches`: True
|
324 |
+
- `fp16_backend`: auto
|
325 |
+
- `push_to_hub_model_id`: None
|
326 |
+
- `push_to_hub_organization`: None
|
327 |
+
- `mp_parameters`:
|
328 |
+
- `auto_find_batch_size`: False
|
329 |
+
- `full_determinism`: False
|
330 |
+
- `torchdynamo`: None
|
331 |
+
- `ray_scope`: last
|
332 |
+
- `ddp_timeout`: 1800
|
333 |
+
- `torch_compile`: False
|
334 |
+
- `torch_compile_backend`: None
|
335 |
+
- `torch_compile_mode`: None
|
336 |
+
- `dispatch_batches`: None
|
337 |
+
- `split_batches`: None
|
338 |
+
- `include_tokens_per_second`: False
|
339 |
+
- `include_num_input_tokens_seen`: False
|
340 |
+
- `neftune_noise_alpha`: None
|
341 |
+
- `optim_target_modules`: None
|
342 |
+
- `batch_eval_metrics`: False
|
343 |
+
- `eval_on_start`: False
|
344 |
+
- `use_liger_kernel`: False
|
345 |
+
- `eval_use_gather_object`: False
|
346 |
+
- `average_tokens_across_devices`: False
|
347 |
+
- `prompts`: None
|
348 |
+
- `batch_sampler`: no_duplicates
|
349 |
+
- `multi_dataset_batch_sampler`: round_robin
|
350 |
+
|
351 |
+
</details>
|
352 |
+
|
353 |
+
### Training Logs
|
354 |
+
| Epoch | Step | Training Loss | sts-dev_spearman_cosine |
|
355 |
+
|:------:|:----:|:-------------:|:-----------------------:|
|
356 |
+
| 0.3477 | 500 | 0.1296 | - |
|
357 |
+
| 0.6954 | 1000 | 0.1192 | 0.8689 |
|
358 |
+
|
359 |
+
|
360 |
+
### Framework Versions
|
361 |
+
- Python: 3.11.10
|
362 |
+
- Sentence Transformers: 3.3.0
|
363 |
+
- Transformers: 4.46.2
|
364 |
+
- PyTorch: 2.4.0+cu121
|
365 |
+
- Accelerate: 1.1.1
|
366 |
+
- Datasets: 3.1.0
|
367 |
+
- Tokenizers: 0.20.3
|
368 |
+
|
369 |
+
## Citation
|
370 |
+
|
371 |
+
### BibTeX
|
372 |
+
|
373 |
+
#### Sentence Transformers
|
374 |
+
```bibtex
|
375 |
+
@inproceedings{reimers-2019-sentence-bert,
|
376 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
377 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
378 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
379 |
+
month = "11",
|
380 |
+
year = "2019",
|
381 |
+
publisher = "Association for Computational Linguistics",
|
382 |
+
url = "https://arxiv.org/abs/1908.10084",
|
383 |
+
}
|
384 |
+
```
|
385 |
+
|
386 |
+
#### MultipleNegativesRankingLoss
|
387 |
+
```bibtex
|
388 |
+
@misc{henderson2017efficient,
|
389 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
390 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
391 |
+
year={2017},
|
392 |
+
eprint={1705.00652},
|
393 |
+
archivePrefix={arXiv},
|
394 |
+
primaryClass={cs.CL}
|
395 |
+
}
|
396 |
+
```
|
397 |
+
|
398 |
+
<!--
|
399 |
+
## Glossary
|
400 |
+
|
401 |
+
*Clearly define terms in order to be accessible across audiences.*
|
402 |
+
-->
|
403 |
+
|
404 |
+
<!--
|
405 |
+
## Model Card Authors
|
406 |
+
|
407 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
408 |
+
-->
|
409 |
+
|
410 |
+
<!--
|
411 |
+
## Model Card Contact
|
412 |
+
|
413 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
414 |
+
-->
|
.ipynb_checkpoints/config-checkpoint.json
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Alibaba-NLP/gte-multilingual-base",
|
3 |
+
"architectures": [
|
4 |
+
"NewModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "Alibaba-NLP/new-impl--configuration.NewConfig",
|
9 |
+
"AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
|
10 |
+
"AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
|
11 |
+
"AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
|
12 |
+
"AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
|
13 |
+
"AutoModelForSequenceClassification": "Alibaba-NLP/new-impl--modeling.NewForSequenceClassification",
|
14 |
+
"AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
|
15 |
+
},
|
16 |
+
"classifier_dropout": 0.0,
|
17 |
+
"hidden_act": "gelu",
|
18 |
+
"hidden_dropout_prob": 0.1,
|
19 |
+
"hidden_size": 768,
|
20 |
+
"id2label": {
|
21 |
+
"0": "LABEL_0"
|
22 |
+
},
|
23 |
+
"initializer_range": 0.02,
|
24 |
+
"intermediate_size": 3072,
|
25 |
+
"label2id": {
|
26 |
+
"LABEL_0": 0
|
27 |
+
},
|
28 |
+
"layer_norm_eps": 1e-12,
|
29 |
+
"layer_norm_type": "layer_norm",
|
30 |
+
"logn_attention_clip1": false,
|
31 |
+
"logn_attention_scale": false,
|
32 |
+
"max_position_embeddings": 8192,
|
33 |
+
"model_type": "new",
|
34 |
+
"num_attention_heads": 12,
|
35 |
+
"num_hidden_layers": 12,
|
36 |
+
"pack_qkv": true,
|
37 |
+
"pad_token_id": 1,
|
38 |
+
"position_embedding_type": "rope",
|
39 |
+
"rope_scaling": {
|
40 |
+
"factor": 8.0,
|
41 |
+
"type": "ntk"
|
42 |
+
},
|
43 |
+
"rope_theta": 20000,
|
44 |
+
"torch_dtype": "float32",
|
45 |
+
"transformers_version": "4.46.2",
|
46 |
+
"type_vocab_size": 1,
|
47 |
+
"unpad_inputs": false,
|
48 |
+
"use_memory_efficient_attention": false,
|
49 |
+
"vocab_size": 250048
|
50 |
+
}
|
.ipynb_checkpoints/configuration-checkpoint.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The GTE Team Authors and Alibaba Group.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" NEW model configuration"""
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
logger = logging.get_logger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
class NewConfig(PretrainedConfig):
|
24 |
+
r"""
|
25 |
+
This is the configuration class to store the configuration of a [`NewModel`] or a [`TFNewModel`]. It is used to
|
26 |
+
instantiate a NEW model according to the specified arguments, defining the model architecture. Instantiating a
|
27 |
+
configuration with the defaults will yield a similar configuration to that of the NEW
|
28 |
+
[izhx/new-base-en](https://huggingface.co/izhx/new-base-en) architecture.
|
29 |
+
|
30 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
31 |
+
documentation from [`PretrainedConfig`] for more information.
|
32 |
+
|
33 |
+
|
34 |
+
Args:
|
35 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
36 |
+
Vocabulary size of the NEW model. Defines the number of different tokens that can be represented by the
|
37 |
+
`inputs_ids` passed when calling [`NewModel`] or [`TFNewModel`].
|
38 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
39 |
+
Dimensionality of the encoder layers and the pooler layer.
|
40 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
41 |
+
Number of hidden layers in the Transformer encoder.
|
42 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
43 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
44 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
45 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
46 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
47 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
48 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
49 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
50 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
51 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
52 |
+
The dropout ratio for the attention probabilities.
|
53 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
54 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
55 |
+
just in case (e.g., 512 or 1024 or 2048).
|
56 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
57 |
+
The vocabulary size of the `token_type_ids` passed when calling [`NewModel`] or [`TFNewModel`].
|
58 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
59 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
60 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
61 |
+
The epsilon used by the layer normalization layers.
|
62 |
+
position_embedding_type (`str`, *optional*, defaults to `"rope"`):
|
63 |
+
Type of position embedding. Choose one of `"absolute"`, `"rope"`.
|
64 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
65 |
+
The base period of the RoPE embeddings.
|
66 |
+
rope_scaling (`Dict`, *optional*):
|
67 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
68 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
69 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
70 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
71 |
+
these scaling strategies behave:
|
72 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
73 |
+
experimental feature, subject to breaking API changes in future versions.
|
74 |
+
classifier_dropout (`float`, *optional*):
|
75 |
+
The dropout ratio for the classification head.
|
76 |
+
|
77 |
+
Examples:
|
78 |
+
|
79 |
+
```python
|
80 |
+
>>> from transformers import NewConfig, NewModel
|
81 |
+
|
82 |
+
>>> # Initializing a NEW izhx/new-base-en style configuration
|
83 |
+
>>> configuration = NewConfig()
|
84 |
+
|
85 |
+
>>> # Initializing a model (with random weights) from the izhx/new-base-en style configuration
|
86 |
+
>>> model = NewModel(configuration)
|
87 |
+
|
88 |
+
>>> # Accessing the model configuration
|
89 |
+
>>> configuration = model.config
|
90 |
+
```"""
|
91 |
+
|
92 |
+
model_type = "new"
|
93 |
+
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
vocab_size=30528,
|
97 |
+
hidden_size=768,
|
98 |
+
num_hidden_layers=12,
|
99 |
+
num_attention_heads=12,
|
100 |
+
intermediate_size=3072,
|
101 |
+
hidden_act="gelu",
|
102 |
+
hidden_dropout_prob=0.1,
|
103 |
+
attention_probs_dropout_prob=0.0,
|
104 |
+
max_position_embeddings=2048,
|
105 |
+
type_vocab_size=1,
|
106 |
+
initializer_range=0.02,
|
107 |
+
layer_norm_type='layer_norm',
|
108 |
+
layer_norm_eps=1e-12,
|
109 |
+
# pad_token_id=0,
|
110 |
+
position_embedding_type="rope",
|
111 |
+
rope_theta=10000.0,
|
112 |
+
rope_scaling=None,
|
113 |
+
classifier_dropout=None,
|
114 |
+
pack_qkv=True,
|
115 |
+
unpad_inputs=False,
|
116 |
+
use_memory_efficient_attention=False,
|
117 |
+
logn_attention_scale=False,
|
118 |
+
logn_attention_clip1=False,
|
119 |
+
**kwargs,
|
120 |
+
):
|
121 |
+
super().__init__(**kwargs)
|
122 |
+
|
123 |
+
self.vocab_size = vocab_size
|
124 |
+
self.hidden_size = hidden_size
|
125 |
+
self.num_hidden_layers = num_hidden_layers
|
126 |
+
self.num_attention_heads = num_attention_heads
|
127 |
+
self.hidden_act = hidden_act
|
128 |
+
self.intermediate_size = intermediate_size
|
129 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
130 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
131 |
+
self.max_position_embeddings = max_position_embeddings
|
132 |
+
self.type_vocab_size = type_vocab_size
|
133 |
+
self.initializer_range = initializer_range
|
134 |
+
self.layer_norm_type = layer_norm_type
|
135 |
+
self.layer_norm_eps = layer_norm_eps
|
136 |
+
self.position_embedding_type = position_embedding_type
|
137 |
+
self.rope_theta = rope_theta
|
138 |
+
self.rope_scaling = rope_scaling
|
139 |
+
self.classifier_dropout = classifier_dropout
|
140 |
+
|
141 |
+
self.pack_qkv = pack_qkv
|
142 |
+
self.unpad_inputs = unpad_inputs
|
143 |
+
self.use_memory_efficient_attention = use_memory_efficient_attention
|
144 |
+
self.logn_attention_scale = logn_attention_scale
|
145 |
+
self.logn_attention_clip1 = logn_attention_clip1
|
.ipynb_checkpoints/modules-checkpoint.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,421 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:579077
|
8 |
+
- loss:MultipleNegativesRankingLoss
|
9 |
+
- loss:CosineSimilarityLoss
|
10 |
+
base_model: Alibaba-NLP/gte-multilingual-base
|
11 |
+
widget:
|
12 |
+
- source_sentence: 공공부문 채용의 경우 안전·건강 등 국민생활과 밀접한 서비스 중심으로 국가공무원을 1만 6000명 증원하고, 공공기관
|
13 |
+
필수인력 확충을 추진한다.
|
14 |
+
sentences:
|
15 |
+
- 공공부문 채용의 경우 안전보건 등 국민생활과 밀접한 서비스를 중심으로 국가공무원을 1만6000명 늘리고 공공기관 필수인력 확충을 추진하기로
|
16 |
+
했습니다.
|
17 |
+
- 백열등보단 간접 조명을 켜두고 독서를 하는게 좋을 것 같아
|
18 |
+
- 이번에 공개한 기관별 정규직 전환 실적은 ‘공공부문 비정규직 고용개선 시스템’(http://public.moel.go.kr)에서 확인할 수
|
19 |
+
있다.
|
20 |
+
- source_sentence: 런던 여행을 하려는 분들에게 추천하고 싶은 곳 입니다.
|
21 |
+
sentences:
|
22 |
+
- 만약 내가 파리에 다시 온다면, 나는 여기에 머무를 것입니다.
|
23 |
+
- 지금의 위기를 새로운 기회와 발전의 원동력으로 삼겠습니다.
|
24 |
+
- 런던을 여행하고 싶은 분들에게 추천해 드리고 싶은 곳이에요.
|
25 |
+
- source_sentence: 이 절에서는 지불 과정에서 내부 통제의 중요성을 강조한다.
|
26 |
+
sentences:
|
27 |
+
- 그들은 스스로 세금을 부과함으로써 고속도로를 건설하고 새로운 버스 노선을 만들 것인가?
|
28 |
+
- 이 섹션에서는 전통적인 지불 프로세스, 전통적인 지불 프로세스 수정 및 지불 프로세스를 효과적으로 관리하기 위한 내부 제어의 중요성에 대해
|
29 |
+
논의합니다.
|
30 |
+
- 이 절은 전통적인 지불 절차에 대한 조정을 다루지 않을 것이다.
|
31 |
+
- source_sentence: 스케이트보드를 타고 건물 계단을 내려가는 스케이트보드 타는 사람.
|
32 |
+
sentences:
|
33 |
+
- 그는 긴장이나 피로의 한계에 도달한 후 해시 물체를 얻기 시작했다.
|
34 |
+
- 스케이트보더가 목을 부러뜨린다
|
35 |
+
- 스케이트보드 타는 사람이 건물 계단을 타고 내려간다
|
36 |
+
- source_sentence: 1896년, 경제 및 행정 조직이 조정되었다.
|
37 |
+
sentences:
|
38 |
+
- 세 명의 여자가 밖에 있다.
|
39 |
+
- 1896년에 아무 관심도 없었다.
|
40 |
+
- 말레이 주 Selangor, Perak, Negeri Sembilan 및 Pahang의 연맹은 1896년에 경제 및 행정 조직을 조정하기 위해
|
41 |
+
선포되었습니다.
|
42 |
+
pipeline_tag: sentence-similarity
|
43 |
+
library_name: sentence-transformers
|
44 |
+
metrics:
|
45 |
+
- pearson_cosine
|
46 |
+
- spearman_cosine
|
47 |
+
model-index:
|
48 |
+
- name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
|
49 |
+
results:
|
50 |
+
- task:
|
51 |
+
type: semantic-similarity
|
52 |
+
name: Semantic Similarity
|
53 |
+
dataset:
|
54 |
+
name: sts dev
|
55 |
+
type: sts-dev
|
56 |
+
metrics:
|
57 |
+
- type: pearson_cosine
|
58 |
+
value: 0.9347680624097541
|
59 |
+
name: Pearson Cosine
|
60 |
+
- type: spearman_cosine
|
61 |
+
value: 0.8993438650317843
|
62 |
+
name: Spearman Cosine
|
63 |
+
---
|
64 |
+
|
65 |
+
# SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
|
66 |
+
|
67 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
68 |
+
|
69 |
+
## Model Details
|
70 |
+
|
71 |
+
### Model Description
|
72 |
+
- **Model Type:** Sentence Transformer
|
73 |
+
- **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) <!-- at revision 7fc06782350c1a83f88b15dd4b38ef853d3b8503 -->
|
74 |
+
- **Maximum Sequence Length:** 8192 tokens
|
75 |
+
- **Output Dimensionality:** 768 dimensions
|
76 |
+
- **Similarity Function:** Cosine Similarity
|
77 |
+
<!-- - **Training Dataset:** Unknown -->
|
78 |
+
<!-- - **Language:** Unknown -->
|
79 |
+
<!-- - **License:** Unknown -->
|
80 |
+
|
81 |
+
### Model Sources
|
82 |
+
|
83 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
84 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
85 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
86 |
+
|
87 |
+
### Full Model Architecture
|
88 |
+
|
89 |
+
```
|
90 |
+
SentenceTransformer(
|
91 |
+
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
|
92 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
93 |
+
(2): Normalize()
|
94 |
+
)
|
95 |
+
```
|
96 |
+
|
97 |
+
## Usage
|
98 |
+
|
99 |
+
### Direct Usage (Sentence Transformers)
|
100 |
+
|
101 |
+
First install the Sentence Transformers library:
|
102 |
+
|
103 |
+
```bash
|
104 |
+
pip install -U sentence-transformers
|
105 |
+
```
|
106 |
+
|
107 |
+
Then you can load this model and run inference.
|
108 |
+
```python
|
109 |
+
from sentence_transformers import SentenceTransformer
|
110 |
+
|
111 |
+
# Download from the 🤗 Hub
|
112 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
113 |
+
# Run inference
|
114 |
+
sentences = [
|
115 |
+
'1896년, 경제 및 행정 조직이 조정되었다.',
|
116 |
+
'말레이 주 Selangor, Perak, Negeri Sembilan 및 Pahang의 연맹은 1896년에 경제 및 행정 조직을 조정하기 위해 선포되었습니다.',
|
117 |
+
'1896년에 아무 관심도 없었다.',
|
118 |
+
]
|
119 |
+
embeddings = model.encode(sentences)
|
120 |
+
print(embeddings.shape)
|
121 |
+
# [3, 768]
|
122 |
+
|
123 |
+
# Get the similarity scores for the embeddings
|
124 |
+
similarities = model.similarity(embeddings, embeddings)
|
125 |
+
print(similarities.shape)
|
126 |
+
# [3, 3]
|
127 |
+
```
|
128 |
+
|
129 |
+
<!--
|
130 |
+
### Direct Usage (Transformers)
|
131 |
+
|
132 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
133 |
+
|
134 |
+
</details>
|
135 |
+
-->
|
136 |
+
|
137 |
+
<!--
|
138 |
+
### Downstream Usage (Sentence Transformers)
|
139 |
+
|
140 |
+
You can finetune this model on your own dataset.
|
141 |
+
|
142 |
+
<details><summary>Click to expand</summary>
|
143 |
+
|
144 |
+
</details>
|
145 |
+
-->
|
146 |
+
|
147 |
+
<!--
|
148 |
+
### Out-of-Scope Use
|
149 |
+
|
150 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
151 |
+
-->
|
152 |
+
|
153 |
+
## Evaluation
|
154 |
+
|
155 |
+
### Metrics
|
156 |
+
|
157 |
+
#### Semantic Similarity
|
158 |
+
|
159 |
+
* Dataset: `sts-dev`
|
160 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
161 |
+
|
162 |
+
| Metric | Value |
|
163 |
+
|:--------------------|:-----------|
|
164 |
+
| pearson_cosine | 0.9348 |
|
165 |
+
| **spearman_cosine** | **0.8993** |
|
166 |
+
|
167 |
+
<!--
|
168 |
+
## Bias, Risks and Limitations
|
169 |
+
|
170 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
171 |
+
-->
|
172 |
+
|
173 |
+
<!--
|
174 |
+
### Recommendations
|
175 |
+
|
176 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
177 |
+
-->
|
178 |
+
|
179 |
+
## Training Details
|
180 |
+
|
181 |
+
### Training Datasets
|
182 |
+
|
183 |
+
#### Unnamed Dataset
|
184 |
+
|
185 |
+
|
186 |
+
* Size: 568,576 training samples
|
187 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
|
188 |
+
* Approximate statistics based on the first 1000 samples:
|
189 |
+
| | sentence_0 | sentence_1 | sentence_2 |
|
190 |
+
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
191 |
+
| type | string | string | string |
|
192 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 20.03 tokens</li><li>max: 122 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 19.48 tokens</li><li>max: 88 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.72 tokens</li><li>max: 47 tokens</li></ul> |
|
193 |
+
* Samples:
|
194 |
+
| sentence_0 | sentence_1 | sentence_2 |
|
195 |
+
|:-------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------|
|
196 |
+
| <code>사람들이 자동차를 좋아한다.</code> | <code>사람들은 클래식 자동차를 존경한다.</code> | <code>사람들이 줄을 서서 콘서트를 기다리고 있다.</code> |
|
197 |
+
| <code>그가 말을 타고 가면서 피의 강물이 흐르고 남자는 안장에 털썩 주저앉았다.</code> | <code>그 남자는 말을 타다가 피를 흘리고 있었다.</code> | <code>남자는 안장에 똑바로 앉았다.</code> |
|
198 |
+
| <code>그 자료는 일년 중 일부만을 다루었다.</code> | <code>올해 3월 보고된 2001년 자료는 예비 자료로 간주해야 하지만(반년만 다뤄지고 새로운 데이터 시스템에 기대되는 통상적인 종류의 스타트업 문제를 반영했다), 이미 공사가 그 어느 때보다 전국적으로 가능한 법률 서비스 관행에 대한 완전한 그림을 제공할 수 있는 풍부한 정보를 만들어냈다.</code> | <code>그 자료는 일년 중 일부만을 다루었을 뿐 전혀 도움이 되지 않았다.</code> |
|
199 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
200 |
+
```json
|
201 |
+
{
|
202 |
+
"scale": 20.0,
|
203 |
+
"similarity_fct": "cos_sim"
|
204 |
+
}
|
205 |
+
```
|
206 |
+
|
207 |
+
#### Unnamed Dataset
|
208 |
+
|
209 |
+
|
210 |
+
* Size: 10,501 training samples
|
211 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
212 |
+
* Approximate statistics based on the first 1000 samples:
|
213 |
+
| | sentence_0 | sentence_1 | label |
|
214 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
215 |
+
| type | string | string | float |
|
216 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 20.82 tokens</li><li>max: 73 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 19.95 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.44</li><li>max: 1.0</li></ul> |
|
217 |
+
* Samples:
|
218 |
+
| sentence_0 | sentence_1 | label |
|
219 |
+
|:------------------------------------------|:----------------------------------------------|:------------------|
|
220 |
+
| <code>제 학교 성적표를 받기로한 메일을 알 수 있을까요?</code> | <code>쿠팡은 여태까지 배송 주문 확인 메일을 몇 통 보냈어?</code> | <code>0.04</code> |
|
221 |
+
| <code>지냈던 숙소 중에서 제일 마음에 들었습니다.</code> | <code>지금 까지 이용한 에어비앤비 중에서 제일 마음에 들었어요.</code> | <code>0.6</code> |
|
222 |
+
| <code>눈 내릴 때 운전은 안됩니다.</code> | <code>눈 내릴 때 운전은 위험해서 안돼.</code> | <code>0.74</code> |
|
223 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
224 |
+
```json
|
225 |
+
{
|
226 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
227 |
+
}
|
228 |
+
```
|
229 |
+
|
230 |
+
### Training Hyperparameters
|
231 |
+
#### Non-Default Hyperparameters
|
232 |
+
|
233 |
+
- `eval_strategy`: steps
|
234 |
+
- `per_device_train_batch_size`: 32
|
235 |
+
- `per_device_eval_batch_size`: 32
|
236 |
+
- `batch_sampler`: no_duplicates
|
237 |
+
- `multi_dataset_batch_sampler`: round_robin
|
238 |
+
|
239 |
+
#### All Hyperparameters
|
240 |
+
<details><summary>Click to expand</summary>
|
241 |
+
|
242 |
+
- `overwrite_output_dir`: False
|
243 |
+
- `do_predict`: False
|
244 |
+
- `eval_strategy`: steps
|
245 |
+
- `prediction_loss_only`: True
|
246 |
+
- `per_device_train_batch_size`: 32
|
247 |
+
- `per_device_eval_batch_size`: 32
|
248 |
+
- `per_gpu_train_batch_size`: None
|
249 |
+
- `per_gpu_eval_batch_size`: None
|
250 |
+
- `gradient_accumulation_steps`: 1
|
251 |
+
- `eval_accumulation_steps`: None
|
252 |
+
- `torch_empty_cache_steps`: None
|
253 |
+
- `learning_rate`: 5e-05
|
254 |
+
- `weight_decay`: 0.0
|
255 |
+
- `adam_beta1`: 0.9
|
256 |
+
- `adam_beta2`: 0.999
|
257 |
+
- `adam_epsilon`: 1e-08
|
258 |
+
- `max_grad_norm`: 1.0
|
259 |
+
- `num_train_epochs`: 3
|
260 |
+
- `max_steps`: -1
|
261 |
+
- `lr_scheduler_type`: linear
|
262 |
+
- `lr_scheduler_kwargs`: {}
|
263 |
+
- `warmup_ratio`: 0.0
|
264 |
+
- `warmup_steps`: 0
|
265 |
+
- `log_level`: passive
|
266 |
+
- `log_level_replica`: warning
|
267 |
+
- `log_on_each_node`: True
|
268 |
+
- `logging_nan_inf_filter`: True
|
269 |
+
- `save_safetensors`: True
|
270 |
+
- `save_on_each_node`: False
|
271 |
+
- `save_only_model`: False
|
272 |
+
- `restore_callback_states_from_checkpoint`: False
|
273 |
+
- `no_cuda`: False
|
274 |
+
- `use_cpu`: False
|
275 |
+
- `use_mps_device`: False
|
276 |
+
- `seed`: 42
|
277 |
+
- `data_seed`: None
|
278 |
+
- `jit_mode_eval`: False
|
279 |
+
- `use_ipex`: False
|
280 |
+
- `bf16`: False
|
281 |
+
- `fp16`: False
|
282 |
+
- `fp16_opt_level`: O1
|
283 |
+
- `half_precision_backend`: auto
|
284 |
+
- `bf16_full_eval`: False
|
285 |
+
- `fp16_full_eval`: False
|
286 |
+
- `tf32`: None
|
287 |
+
- `local_rank`: 0
|
288 |
+
- `ddp_backend`: None
|
289 |
+
- `tpu_num_cores`: None
|
290 |
+
- `tpu_metrics_debug`: False
|
291 |
+
- `debug`: []
|
292 |
+
- `dataloader_drop_last`: False
|
293 |
+
- `dataloader_num_workers`: 0
|
294 |
+
- `dataloader_prefetch_factor`: None
|
295 |
+
- `past_index`: -1
|
296 |
+
- `disable_tqdm`: False
|
297 |
+
- `remove_unused_columns`: True
|
298 |
+
- `label_names`: None
|
299 |
+
- `load_best_model_at_end`: False
|
300 |
+
- `ignore_data_skip`: False
|
301 |
+
- `fsdp`: []
|
302 |
+
- `fsdp_min_num_params`: 0
|
303 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
304 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
305 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
306 |
+
- `deepspeed`: None
|
307 |
+
- `label_smoothing_factor`: 0.0
|
308 |
+
- `optim`: adamw_torch
|
309 |
+
- `optim_args`: None
|
310 |
+
- `adafactor`: False
|
311 |
+
- `group_by_length`: False
|
312 |
+
- `length_column_name`: length
|
313 |
+
- `ddp_find_unused_parameters`: None
|
314 |
+
- `ddp_bucket_cap_mb`: None
|
315 |
+
- `ddp_broadcast_buffers`: False
|
316 |
+
- `dataloader_pin_memory`: True
|
317 |
+
- `dataloader_persistent_workers`: False
|
318 |
+
- `skip_memory_metrics`: True
|
319 |
+
- `use_legacy_prediction_loop`: False
|
320 |
+
- `push_to_hub`: False
|
321 |
+
- `resume_from_checkpoint`: None
|
322 |
+
- `hub_model_id`: None
|
323 |
+
- `hub_strategy`: every_save
|
324 |
+
- `hub_private_repo`: False
|
325 |
+
- `hub_always_push`: False
|
326 |
+
- `gradient_checkpointing`: False
|
327 |
+
- `gradient_checkpointing_kwargs`: None
|
328 |
+
- `include_inputs_for_metrics`: False
|
329 |
+
- `include_for_metrics`: []
|
330 |
+
- `eval_do_concat_batches`: True
|
331 |
+
- `fp16_backend`: auto
|
332 |
+
- `push_to_hub_model_id`: None
|
333 |
+
- `push_to_hub_organization`: None
|
334 |
+
- `mp_parameters`:
|
335 |
+
- `auto_find_batch_size`: False
|
336 |
+
- `full_determinism`: False
|
337 |
+
- `torchdynamo`: None
|
338 |
+
- `ray_scope`: last
|
339 |
+
- `ddp_timeout`: 1800
|
340 |
+
- `torch_compile`: False
|
341 |
+
- `torch_compile_backend`: None
|
342 |
+
- `torch_compile_mode`: None
|
343 |
+
- `dispatch_batches`: None
|
344 |
+
- `split_batches`: None
|
345 |
+
- `include_tokens_per_second`: False
|
346 |
+
- `include_num_input_tokens_seen`: False
|
347 |
+
- `neftune_noise_alpha`: None
|
348 |
+
- `optim_target_modules`: None
|
349 |
+
- `batch_eval_metrics`: False
|
350 |
+
- `eval_on_start`: False
|
351 |
+
- `use_liger_kernel`: False
|
352 |
+
- `eval_use_gather_object`: False
|
353 |
+
- `average_tokens_across_devices`: False
|
354 |
+
- `prompts`: None
|
355 |
+
- `batch_sampler`: no_duplicates
|
356 |
+
- `multi_dataset_batch_sampler`: round_robin
|
357 |
+
|
358 |
+
</details>
|
359 |
+
|
360 |
+
### Training Logs
|
361 |
+
| Epoch | Step | Training Loss | sts-dev_spearman_cosine |
|
362 |
+
|:------:|:----:|:-------------:|:-----------------------:|
|
363 |
+
| 0.7599 | 500 | 0.324 | - |
|
364 |
+
| 1.0015 | 659 | - | 0.8993 |
|
365 |
+
|
366 |
+
|
367 |
+
### Framework Versions
|
368 |
+
- Python: 3.11.10
|
369 |
+
- Sentence Transformers: 3.3.0
|
370 |
+
- Transformers: 4.46.2
|
371 |
+
- PyTorch: 2.4.0+cu121
|
372 |
+
- Accelerate: 1.1.1
|
373 |
+
- Datasets: 3.1.0
|
374 |
+
- Tokenizers: 0.20.3
|
375 |
+
|
376 |
+
## Citation
|
377 |
+
|
378 |
+
### BibTeX
|
379 |
+
|
380 |
+
#### Sentence Transformers
|
381 |
+
```bibtex
|
382 |
+
@inproceedings{reimers-2019-sentence-bert,
|
383 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
384 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
385 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
386 |
+
month = "11",
|
387 |
+
year = "2019",
|
388 |
+
publisher = "Association for Computational Linguistics",
|
389 |
+
url = "https://arxiv.org/abs/1908.10084",
|
390 |
+
}
|
391 |
+
```
|
392 |
+
|
393 |
+
#### MultipleNegativesRankingLoss
|
394 |
+
```bibtex
|
395 |
+
@misc{henderson2017efficient,
|
396 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
397 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
398 |
+
year={2017},
|
399 |
+
eprint={1705.00652},
|
400 |
+
archivePrefix={arXiv},
|
401 |
+
primaryClass={cs.CL}
|
402 |
+
}
|
403 |
+
```
|
404 |
+
|
405 |
+
<!--
|
406 |
+
## Glossary
|
407 |
+
|
408 |
+
*Clearly define terms in order to be accessible across audiences.*
|
409 |
+
-->
|
410 |
+
|
411 |
+
<!--
|
412 |
+
## Model Card Authors
|
413 |
+
|
414 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
415 |
+
-->
|
416 |
+
|
417 |
+
<!--
|
418 |
+
## Model Card Contact
|
419 |
+
|
420 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
421 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Alibaba-NLP/gte-multilingual-base",
|
3 |
+
"architectures": [
|
4 |
+
"NewModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration.NewConfig",
|
9 |
+
"AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
|
10 |
+
"AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
|
11 |
+
"AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
|
12 |
+
"AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
|
13 |
+
"AutoModelForSequenceClassification": "Alibaba-NLP/new-impl--modeling.NewForSequenceClassification",
|
14 |
+
"AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
|
15 |
+
},
|
16 |
+
"classifier_dropout": 0.0,
|
17 |
+
"hidden_act": "gelu",
|
18 |
+
"hidden_dropout_prob": 0.1,
|
19 |
+
"hidden_size": 768,
|
20 |
+
"id2label": {
|
21 |
+
"0": "LABEL_0"
|
22 |
+
},
|
23 |
+
"initializer_range": 0.02,
|
24 |
+
"intermediate_size": 3072,
|
25 |
+
"label2id": {
|
26 |
+
"LABEL_0": 0
|
27 |
+
},
|
28 |
+
"layer_norm_eps": 1e-12,
|
29 |
+
"layer_norm_type": "layer_norm",
|
30 |
+
"logn_attention_clip1": false,
|
31 |
+
"logn_attention_scale": false,
|
32 |
+
"max_position_embeddings": 8192,
|
33 |
+
"model_type": "new",
|
34 |
+
"num_attention_heads": 12,
|
35 |
+
"num_hidden_layers": 12,
|
36 |
+
"pack_qkv": true,
|
37 |
+
"pad_token_id": 1,
|
38 |
+
"position_embedding_type": "rope",
|
39 |
+
"rope_scaling": {
|
40 |
+
"factor": 8.0,
|
41 |
+
"type": "ntk"
|
42 |
+
},
|
43 |
+
"rope_theta": 20000,
|
44 |
+
"torch_dtype": "float32",
|
45 |
+
"transformers_version": "4.46.2",
|
46 |
+
"type_vocab_size": 1,
|
47 |
+
"unpad_inputs": false,
|
48 |
+
"use_memory_efficient_attention": false,
|
49 |
+
"vocab_size": 250048
|
50 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.0",
|
4 |
+
"transformers": "4.46.2",
|
5 |
+
"pytorch": "2.4.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
configuration.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The GTE Team Authors and Alibaba Group.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" NEW model configuration"""
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
logger = logging.get_logger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
class NewConfig(PretrainedConfig):
|
24 |
+
r"""
|
25 |
+
This is the configuration class to store the configuration of a [`NewModel`] or a [`TFNewModel`]. It is used to
|
26 |
+
instantiate a NEW model according to the specified arguments, defining the model architecture. Instantiating a
|
27 |
+
configuration with the defaults will yield a similar configuration to that of the NEW
|
28 |
+
[izhx/new-base-en](https://huggingface.co/izhx/new-base-en) architecture.
|
29 |
+
|
30 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
31 |
+
documentation from [`PretrainedConfig`] for more information.
|
32 |
+
|
33 |
+
|
34 |
+
Args:
|
35 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
36 |
+
Vocabulary size of the NEW model. Defines the number of different tokens that can be represented by the
|
37 |
+
`inputs_ids` passed when calling [`NewModel`] or [`TFNewModel`].
|
38 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
39 |
+
Dimensionality of the encoder layers and the pooler layer.
|
40 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
41 |
+
Number of hidden layers in the Transformer encoder.
|
42 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
43 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
44 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
45 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
46 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
47 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
48 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
49 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
50 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
51 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
52 |
+
The dropout ratio for the attention probabilities.
|
53 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
54 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
55 |
+
just in case (e.g., 512 or 1024 or 2048).
|
56 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
57 |
+
The vocabulary size of the `token_type_ids` passed when calling [`NewModel`] or [`TFNewModel`].
|
58 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
59 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
60 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
61 |
+
The epsilon used by the layer normalization layers.
|
62 |
+
position_embedding_type (`str`, *optional*, defaults to `"rope"`):
|
63 |
+
Type of position embedding. Choose one of `"absolute"`, `"rope"`.
|
64 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
65 |
+
The base period of the RoPE embeddings.
|
66 |
+
rope_scaling (`Dict`, *optional*):
|
67 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
68 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
69 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
70 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
71 |
+
these scaling strategies behave:
|
72 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
73 |
+
experimental feature, subject to breaking API changes in future versions.
|
74 |
+
classifier_dropout (`float`, *optional*):
|
75 |
+
The dropout ratio for the classification head.
|
76 |
+
|
77 |
+
Examples:
|
78 |
+
|
79 |
+
```python
|
80 |
+
>>> from transformers import NewConfig, NewModel
|
81 |
+
|
82 |
+
>>> # Initializing a NEW izhx/new-base-en style configuration
|
83 |
+
>>> configuration = NewConfig()
|
84 |
+
|
85 |
+
>>> # Initializing a model (with random weights) from the izhx/new-base-en style configuration
|
86 |
+
>>> model = NewModel(configuration)
|
87 |
+
|
88 |
+
>>> # Accessing the model configuration
|
89 |
+
>>> configuration = model.config
|
90 |
+
```"""
|
91 |
+
|
92 |
+
model_type = "new"
|
93 |
+
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
vocab_size=30528,
|
97 |
+
hidden_size=768,
|
98 |
+
num_hidden_layers=12,
|
99 |
+
num_attention_heads=12,
|
100 |
+
intermediate_size=3072,
|
101 |
+
hidden_act="gelu",
|
102 |
+
hidden_dropout_prob=0.1,
|
103 |
+
attention_probs_dropout_prob=0.0,
|
104 |
+
max_position_embeddings=2048,
|
105 |
+
type_vocab_size=1,
|
106 |
+
initializer_range=0.02,
|
107 |
+
layer_norm_type='layer_norm',
|
108 |
+
layer_norm_eps=1e-12,
|
109 |
+
# pad_token_id=0,
|
110 |
+
position_embedding_type="rope",
|
111 |
+
rope_theta=10000.0,
|
112 |
+
rope_scaling=None,
|
113 |
+
classifier_dropout=None,
|
114 |
+
pack_qkv=True,
|
115 |
+
unpad_inputs=False,
|
116 |
+
use_memory_efficient_attention=False,
|
117 |
+
logn_attention_scale=False,
|
118 |
+
logn_attention_clip1=False,
|
119 |
+
**kwargs,
|
120 |
+
):
|
121 |
+
super().__init__(**kwargs)
|
122 |
+
|
123 |
+
self.vocab_size = vocab_size
|
124 |
+
self.hidden_size = hidden_size
|
125 |
+
self.num_hidden_layers = num_hidden_layers
|
126 |
+
self.num_attention_heads = num_attention_heads
|
127 |
+
self.hidden_act = hidden_act
|
128 |
+
self.intermediate_size = intermediate_size
|
129 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
130 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
131 |
+
self.max_position_embeddings = max_position_embeddings
|
132 |
+
self.type_vocab_size = type_vocab_size
|
133 |
+
self.initializer_range = initializer_range
|
134 |
+
self.layer_norm_type = layer_norm_type
|
135 |
+
self.layer_norm_eps = layer_norm_eps
|
136 |
+
self.position_embedding_type = position_embedding_type
|
137 |
+
self.rope_theta = rope_theta
|
138 |
+
self.rope_scaling = rope_scaling
|
139 |
+
self.classifier_dropout = classifier_dropout
|
140 |
+
|
141 |
+
self.pack_qkv = pack_qkv
|
142 |
+
self.unpad_inputs = unpad_inputs
|
143 |
+
self.use_memory_efficient_attention = use_memory_efficient_attention
|
144 |
+
self.logn_attention_scale = logn_attention_scale
|
145 |
+
self.logn_attention_clip1 = logn_attention_clip1
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5b9411237518e546ca2e4159b79328a76af59bee7351e250227fd9b4924e93a
|
3 |
+
size 1221487872
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa7a6ad87a7ce8fe196787355f6af7d03aee94d19c54a5eb1392ed18c8ef451a
|
3 |
+
size 17082988
|
tokenizer_config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 8192,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
53 |
+
"unk_token": "<unk>"
|
54 |
+
}
|