add model card
Browse files
README.md
CHANGED
@@ -1,3 +1,25 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- imagenet-1k
|
5 |
+
- ade20k
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- mIoU
|
9 |
+
pipeline_tag: image-classification
|
10 |
---
|
11 |
+
# VisionLLaMA-Base-MAE
|
12 |
+
|
13 |
+
With the Masked Autoencoders' paradigm, VisionLLaMA-Base-MAE model is trained on ImageNet-1k without labels. It manifests substantial improvements over classification tasks (SFT, linear probing) on ImageNet-1K and the segmentation task on ADE20K.
|
14 |
+
|
15 |
+
| Model | ImageNet Acc (SFT) | ImageNet Acc (Linear Probe) | ADE20K Segmentation |
|
16 |
+
| -- | -- | --| --|
|
17 |
+
| VisionLLaMA-Base-MAE (ep800) |84.0 |69.7 |49.0 |
|
18 |
+
| VisionLLaMA-Base-MAE (ep1600) |84.3 | 71.7| 50.2 |
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
# How to Use
|
24 |
+
|
25 |
+
Please refer the [Github](https://github.com/Meituan-AutoML/VisionLLaMA) page for usage.
|