First commit to the Hugging Face Hub!
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 260.86 +/- 17.56
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2e047bc3a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2e047bc430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2e047bc4c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2e047bc550>", "_build": "<function ActorCriticPolicy._build at 0x7f2e047bc5e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2e047bc670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2e047bc700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2e047bc790>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2e047bc820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2e047bc8b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2e047bc940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2e047bc9d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2e047c0400>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686681227347284016, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKCsET6+HaU/LTXvPh19fL4NdR4+rbDBPQAAAAAAAAAAJjEOvoSCEz9FaIs+x4hpvron4LyqIv89AAAAAAAAAADNSJA7j3p9uvdRw7s+qwU4tQV4uzC0wbYAAIA/AACAP2YuPz0UNJG6RckEOqnYKDaog7I2ZPsZuQAAgD8AAIA/mv87PIUD/LnT8tI6b4jKtIWcvbpbdva5AACAPwAAgD9mwtQ7rlGSuvvB5bvscR823MtoOh5OjrUAAIA/AACAP80XhDz2lEe6TY9muckh+rOGXhu6UQuEOAAAgD8AAIA/5vMGvezxhbmQ3Ni6cyKJtVF2ELurBf05AACAPwAAgD8zMym84aSOutiyajqG6D81QvLuOSoOiLkAAIA/AACAP03lpz0NGaI/xkA3P+INGL9xjCy8yjTKPQAAAAAAAAAAgB0HvVw3d7rm34a8G+eiNvQjHrueLhS2AACAPwAAgD+aba67w3lzulh7CruZtg62Bg1vukkxIjoAAIA/AACAPwAAojh73qC65bQtOhGyEDWAYKG5SNhHuQAAgD8AAIA/Gh9IPVzLMboTfZA7IRdmtrf937pdQ2O1AAAAAAAAgD9NGHo9eyaAujkiELxFfH42HW42OoMw6rUAAIA/AACAP4CUcj1If4O6Zz2su16vmDY9N0y7OKMJtgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF+YRxcVxjuMAWyUTegDjAF0lEdAnQF/jwQUYnV9lChoBkdAXzJFvybx3GgHTegDaAhHQJ0DHnbItDl1fZQoaAZHQGJ1ux0MgEFoB03oA2gIR0CdBNV0Lc9GdX2UKGgGR0BkmdoxpL26aAdN6ANoCEdAnQlW5c1O03V9lChoBkdAZpBIkqtoz2gHTegDaAhHQJ0OfcuanaZ1fZQoaAZHQGJt/rjYI0JoB03oA2gIR0CdF4EeQuEmdX2UKGgGR0Bit47YChexaAdN6ANoCEdAnRyAH/tICnV9lChoBkdAYR7Bdld1MmgHTegDaAhHQJ0frk1dgOV1fZQoaAZHQGNGaoVEd/9oB03oA2gIR0CdKbHmA9V4dX2UKGgGR0BnHO6VdHDraAdN6ANoCEdAnSrChvitJXV9lChoBkdAYbu7/XGwR2gHTegDaAhHQJ0rRGOMl1N1fZQoaAZHQGQyvzFuNxVoB03oA2gIR0CdLRQ0oBq9dX2UKGgGR0Bji9+w1R+CaAdN6ANoCEdAnTDIjbBXS3V9lChoBkdAYY9bM5fdAWgHTegDaAhHQJ0xFqdpZfV1fZQoaAZHQGDfVtXPqs5oB03oA2gIR0CdVOeIVM24dX2UKGgGR0BjeGEoOQQuaAdN6ANoCEdAnVctkJ8fFXV9lChoBkdAY48nrIHTqmgHTegDaAhHQJ1Yr0163RZ1fZQoaAZHQGTjU9yLhrFoB03oA2gIR0CdWnJvo/zKdX2UKGgGR0BkT7Ck43m3aAdN6ANoCEdAnVxGAPNFB3V9lChoBkdAZcE+cH4XXWgHTegDaAhHQJ1hBEmY0EZ1fZQoaAZHQGFFyLAHmihoB03oA2gIR0CdZfekHlfadX2UKGgGR0Bl4agM+eOGaAdN6ANoCEdAnWyQLVnVXnV9lChoBkdAX1ppdrwfAGgHTegDaAhHQJ1wASrYGt91fZQoaAZHQGMmim/FirloB03oA2gIR0Cdcl+cH4XXdX2UKGgGR0Bd7UBXCCSSaAdN6ANoCEdAnXwFo+Ofd3V9lChoBkdAYg7eyAxzrGgHTegDaAhHQJ19ChzvJBB1fZQoaAZHQGPLXTVlPJtoB03oA2gIR0CdfYgtvn8sdX2UKGgGR0BhmH0/W1+iaAdN6ANoCEdAnX8yvcJtznV9lChoBkdAX4/OfNA1N2gHTegDaAhHQJ2De++M6zV1fZQoaAZHQGOJ2+oLofVoB03oA2gIR0Cdg+KYiPhidX2UKGgGR0BjluluWKMvaAdN6ANoCEdAnahjvJA+p3V9lChoBkdAYrJQj2SMcmgHTegDaAhHQJ2p9+OOsDJ1fZQoaAZHQGQEwbVBlc1oB03oA2gIR0Cdqyef7JnydX2UKGgGR0BiEf9ehPCVaAdN6ANoCEdAnazQFX7tRnV9lChoBkdAZ+70HyEtd2gHTegDaAhHQJ2uehi9Zid1fZQoaAZHQF3ulzltCRhoB03oA2gIR0CdssZPEbYLdX2UKGgGR0BmjS2Yv38GaAdN6ANoCEdAnbcnm3fAK3V9lChoBkdAXEEMMI/qxGgHTegDaAhHQJ298Z5zHS51fZQoaAZHQGBb/LDAJsxoB03oA2gIR0Cdwf2ZRbbDdX2UKGgGR0BiqtzltCRfaAdN6ANoCEdAncSzDKoybnV9lChoBkdAYao7Sy+pO2gHTegDaAhHQJ3OtPva11J1fZQoaAZHQGbj1zhgmZ5oB03oA2gIR0Cdz4kVvddndX2UKGgGR0Bg+kD0UXYUaAdN6ANoCEdAnc/5gogFHXV9lChoBkdAYjhYK6WgOGgHTegDaAhHQJ3RcC8vmHR1fZQoaAZHQGJTl4keIVNoB03oA2gIR0Cd1FV2Rq46dX2UKGgGR0BnHNxbSqlxaAdN6ANoCEdAndSSiudPL3V9lChoBkdAY66/BWPtD2gHTegDaAhHQJ3yB78ejmF1fZQoaAZHQGXmXrMTviNoB03oA2gIR0Cd81OfukULdX2UKGgGR0BkSZmRNh3JaAdN6ANoCEdAnfRsFdLQHHV9lChoBkdAZMxGIbfgrGgHTegDaAhHQJ32aU8mrsB1fZQoaAZHQGYtqsuFpPBoB03oA2gIR0Cd+FDcdo38dX2UKGgGR0BgV5xtHhCMaAdN6ANoCEdAnf2Tp9qk/XV9lChoBkdAYz78PWhAW2gHTegDaAhHQJ4Dd0DEFW51fZQoaAZHQGKY/HxSYPZoB03oA2gIR0CeCeL2YfGNdX2UKGgGR0BlMGom5UcXaAdN6ANoCEdAngzGiHqNZXV9lChoBkdAYWd3N9ph4WgHTegDaAhHQJ4OrJq7Acl1fZQoaAZHQGEjHtOVPepoB03oA2gIR0CeFouKoAGTdX2UKGgGR0BnAY24uscRaAdN6ANoCEdAnhdg8wHqvHV9lChoBkdAYHhhhH9WIWgHTegDaAhHQJ4XyE384xV1fZQoaAZHQGbY1+qioKloB03oA2gIR0CeGTS0Sh8IdX2UKGgGR0Bi/OaYu01JaAdN6ANoCEdAnhwenQ6ZIHV9lChoBkdAX5Zzr/sE7mgHTegDaAhHQJ4cWu9vjwR1fZQoaAZHQGLQ3Gff4ypoB03oA2gIR0CeKkCWu5jIdX2UKGgGR0Bneux6fJ3gaAdN6ANoCEdAnkBIwudwvXV9lChoBkdAZezbmlqJuWgHTegDaAhHQJ5BR6MR6GB1fZQoaAZHQGDNm/FirktoB03oA2gIR0CeQsIMjNY9dX2UKGgGR0Biuv6O5rgwaAdN6ANoCEdAnkRHPeHi33V9lChoBkdAYk/UBGQSz2gHTegDaAhHQJ5IL+kxh2J1fZQoaAZHQGP/krXlKbtoB03oA2gIR0CeTG5p8F6idX2UKGgGR0Bq6J3A2ycDaAdNqwNoCEdAnlGIFNcnmnV9lChoBkdAZQyVLSNOumgHTegDaAhHQJ5R5bqyGBZ1fZQoaAZHQGOVfVAiV0NoB03oA2gIR0CeVn+PzWf9dX2UKGgGR0BBoeeFtbcHaAdL6WgIR0CeWEsNUfgadX2UKGgGR0BkF+K/EfknaAdN6ANoCEdAnl6DG5tm+XV9lChoBkdAZGIKRdQfp2gHTegDaAhHQJ5fZ9tuUEB1fZQoaAZHQGKJqbz9S/FoB03oA2gIR0CeX9aQ3gk1dX2UKGgGR0BlmUFbFCLNaAdN6ANoCEdAnmFbpA2Q4nV9lChoBkdAZkFvze40/GgHTegDaAhHQJ5kZp48lol1fZQoaAZHQF84yeZof0VoB03oA2gIR0CeZKYTTOPedX2UKGgGR0BBGSwGGEf1aAdL0GgIR0CectkmhM8HdX2UKGgGR0BnH3hIe5nUaAdN6ANoCEdAnnhDHfdhzHV9lChoBkdAYUym0mdAgWgHTegDaAhHQJ56IAxSHdp1fZQoaAZHQGYJeL3sXzloB03oA2gIR0Ceit9ic5KfdX2UKGgGR0Bkl2Jk5IYnaAdN6ANoCEdAnox75ZbILnV9lChoBkdAY+Jv0AcT8GgHTegDaAhHQJ6OChnJ1aJ1fZQoaAZHQGg75ML4N7VoB03oA2gIR0CeklYYBNmEdX2UKGgGR0BMc1TJhfBvaAdL02gIR0Cek8CMPz4DdX2UKGgGR0AiyghbGFSLaAdL7GgIR0CemizQeFL4dX2UKGgGR0BhcfReC04SaAdN6ANoCEdAnpwcn7YTTXV9lChoBkdAY9fsvZh8Y2gHTegDaAhHQJ6chDw6QvJ1fZQoaAZHQGSx/jCHh0hoB03oA2gIR0CeoZWPLgXNdX2UKGgGR0Bj4AggX/HYaAdN6ANoCEdAnqQyngpBonV9lChoBkdAX4ZnpSrHVGgHTegDaAhHQJ6tVVT72td1fZQoaAZHQGBFeqrBCUpoB03oA2gIR0CerqGY8dPtdX2UKGgGR0BitlpM6BAfaAdN6ANoCEdAnq9C1qnFYXV9lChoBkdAZe45jH4oJGgHTegDaAhHQJ6xZnL7oB91fZQoaAZHQGS3B6rvLHNoB03oA2gIR0CetZENvwVkdX2UKGgGR0BllDncL0BfaAdN6ANoCEdAnsDNgjQiRnV9lChoBkdAY2fb2USqVGgHTegDaAhHQJ7GKKR+z+p1fZQoaAZHQGISVwHZ9NNoB03oA2gIR0Cexz+glF+edWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3865f9a39abd2372c368ca5263a5a44a55f3e8081d224bce53d4cddd980a0ed7
|
3 |
+
size 146751
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2e047bc3a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2e047bc430>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2e047bc4c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2e047bc550>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2e047bc5e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f2e047bc670>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2e047bc700>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2e047bc790>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2e047bc820>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2e047bc8b0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2e047bc940>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2e047bc9d0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f2e047c0400>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1686681227347284016,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKCsET6+HaU/LTXvPh19fL4NdR4+rbDBPQAAAAAAAAAAJjEOvoSCEz9FaIs+x4hpvron4LyqIv89AAAAAAAAAADNSJA7j3p9uvdRw7s+qwU4tQV4uzC0wbYAAIA/AACAP2YuPz0UNJG6RckEOqnYKDaog7I2ZPsZuQAAgD8AAIA/mv87PIUD/LnT8tI6b4jKtIWcvbpbdva5AACAPwAAgD9mwtQ7rlGSuvvB5bvscR823MtoOh5OjrUAAIA/AACAP80XhDz2lEe6TY9muckh+rOGXhu6UQuEOAAAgD8AAIA/5vMGvezxhbmQ3Ni6cyKJtVF2ELurBf05AACAPwAAgD8zMym84aSOutiyajqG6D81QvLuOSoOiLkAAIA/AACAP03lpz0NGaI/xkA3P+INGL9xjCy8yjTKPQAAAAAAAAAAgB0HvVw3d7rm34a8G+eiNvQjHrueLhS2AACAPwAAgD+aba67w3lzulh7CruZtg62Bg1vukkxIjoAAIA/AACAPwAAojh73qC65bQtOhGyEDWAYKG5SNhHuQAAgD8AAIA/Gh9IPVzLMboTfZA7IRdmtrf937pdQ2O1AAAAAAAAgD9NGHo9eyaAujkiELxFfH42HW42OoMw6rUAAIA/AACAP4CUcj1If4O6Zz2su16vmDY9N0y7OKMJtgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF+YRxcVxjuMAWyUTegDjAF0lEdAnQF/jwQUYnV9lChoBkdAXzJFvybx3GgHTegDaAhHQJ0DHnbItDl1fZQoaAZHQGJ1ux0MgEFoB03oA2gIR0CdBNV0Lc9GdX2UKGgGR0BkmdoxpL26aAdN6ANoCEdAnQlW5c1O03V9lChoBkdAZpBIkqtoz2gHTegDaAhHQJ0OfcuanaZ1fZQoaAZHQGJt/rjYI0JoB03oA2gIR0CdF4EeQuEmdX2UKGgGR0Bit47YChexaAdN6ANoCEdAnRyAH/tICnV9lChoBkdAYR7Bdld1MmgHTegDaAhHQJ0frk1dgOV1fZQoaAZHQGNGaoVEd/9oB03oA2gIR0CdKbHmA9V4dX2UKGgGR0BnHO6VdHDraAdN6ANoCEdAnSrChvitJXV9lChoBkdAYbu7/XGwR2gHTegDaAhHQJ0rRGOMl1N1fZQoaAZHQGQyvzFuNxVoB03oA2gIR0CdLRQ0oBq9dX2UKGgGR0Bji9+w1R+CaAdN6ANoCEdAnTDIjbBXS3V9lChoBkdAYY9bM5fdAWgHTegDaAhHQJ0xFqdpZfV1fZQoaAZHQGDfVtXPqs5oB03oA2gIR0CdVOeIVM24dX2UKGgGR0BjeGEoOQQuaAdN6ANoCEdAnVctkJ8fFXV9lChoBkdAY48nrIHTqmgHTegDaAhHQJ1Yr0163RZ1fZQoaAZHQGTjU9yLhrFoB03oA2gIR0CdWnJvo/zKdX2UKGgGR0BkT7Ck43m3aAdN6ANoCEdAnVxGAPNFB3V9lChoBkdAZcE+cH4XXWgHTegDaAhHQJ1hBEmY0EZ1fZQoaAZHQGFFyLAHmihoB03oA2gIR0CdZfekHlfadX2UKGgGR0Bl4agM+eOGaAdN6ANoCEdAnWyQLVnVXnV9lChoBkdAX1ppdrwfAGgHTegDaAhHQJ1wASrYGt91fZQoaAZHQGMmim/FirloB03oA2gIR0Cdcl+cH4XXdX2UKGgGR0Bd7UBXCCSSaAdN6ANoCEdAnXwFo+Ofd3V9lChoBkdAYg7eyAxzrGgHTegDaAhHQJ19ChzvJBB1fZQoaAZHQGPLXTVlPJtoB03oA2gIR0CdfYgtvn8sdX2UKGgGR0BhmH0/W1+iaAdN6ANoCEdAnX8yvcJtznV9lChoBkdAX4/OfNA1N2gHTegDaAhHQJ2De++M6zV1fZQoaAZHQGOJ2+oLofVoB03oA2gIR0Cdg+KYiPhidX2UKGgGR0BjluluWKMvaAdN6ANoCEdAnahjvJA+p3V9lChoBkdAYrJQj2SMcmgHTegDaAhHQJ2p9+OOsDJ1fZQoaAZHQGQEwbVBlc1oB03oA2gIR0Cdqyef7JnydX2UKGgGR0BiEf9ehPCVaAdN6ANoCEdAnazQFX7tRnV9lChoBkdAZ+70HyEtd2gHTegDaAhHQJ2uehi9Zid1fZQoaAZHQF3ulzltCRhoB03oA2gIR0CdssZPEbYLdX2UKGgGR0BmjS2Yv38GaAdN6ANoCEdAnbcnm3fAK3V9lChoBkdAXEEMMI/qxGgHTegDaAhHQJ298Z5zHS51fZQoaAZHQGBb/LDAJsxoB03oA2gIR0Cdwf2ZRbbDdX2UKGgGR0BiqtzltCRfaAdN6ANoCEdAncSzDKoybnV9lChoBkdAYao7Sy+pO2gHTegDaAhHQJ3OtPva11J1fZQoaAZHQGbj1zhgmZ5oB03oA2gIR0Cdz4kVvddndX2UKGgGR0Bg+kD0UXYUaAdN6ANoCEdAnc/5gogFHXV9lChoBkdAYjhYK6WgOGgHTegDaAhHQJ3RcC8vmHR1fZQoaAZHQGJTl4keIVNoB03oA2gIR0Cd1FV2Rq46dX2UKGgGR0BnHNxbSqlxaAdN6ANoCEdAndSSiudPL3V9lChoBkdAY66/BWPtD2gHTegDaAhHQJ3yB78ejmF1fZQoaAZHQGXmXrMTviNoB03oA2gIR0Cd81OfukULdX2UKGgGR0BkSZmRNh3JaAdN6ANoCEdAnfRsFdLQHHV9lChoBkdAZMxGIbfgrGgHTegDaAhHQJ32aU8mrsB1fZQoaAZHQGYtqsuFpPBoB03oA2gIR0Cd+FDcdo38dX2UKGgGR0BgV5xtHhCMaAdN6ANoCEdAnf2Tp9qk/XV9lChoBkdAYz78PWhAW2gHTegDaAhHQJ4Dd0DEFW51fZQoaAZHQGKY/HxSYPZoB03oA2gIR0CeCeL2YfGNdX2UKGgGR0BlMGom5UcXaAdN6ANoCEdAngzGiHqNZXV9lChoBkdAYWd3N9ph4WgHTegDaAhHQJ4OrJq7Acl1fZQoaAZHQGEjHtOVPepoB03oA2gIR0CeFouKoAGTdX2UKGgGR0BnAY24uscRaAdN6ANoCEdAnhdg8wHqvHV9lChoBkdAYHhhhH9WIWgHTegDaAhHQJ4XyE384xV1fZQoaAZHQGbY1+qioKloB03oA2gIR0CeGTS0Sh8IdX2UKGgGR0Bi/OaYu01JaAdN6ANoCEdAnhwenQ6ZIHV9lChoBkdAX5Zzr/sE7mgHTegDaAhHQJ4cWu9vjwR1fZQoaAZHQGLQ3Gff4ypoB03oA2gIR0CeKkCWu5jIdX2UKGgGR0Bneux6fJ3gaAdN6ANoCEdAnkBIwudwvXV9lChoBkdAZezbmlqJuWgHTegDaAhHQJ5BR6MR6GB1fZQoaAZHQGDNm/FirktoB03oA2gIR0CeQsIMjNY9dX2UKGgGR0Biuv6O5rgwaAdN6ANoCEdAnkRHPeHi33V9lChoBkdAYk/UBGQSz2gHTegDaAhHQJ5IL+kxh2J1fZQoaAZHQGP/krXlKbtoB03oA2gIR0CeTG5p8F6idX2UKGgGR0Bq6J3A2ycDaAdNqwNoCEdAnlGIFNcnmnV9lChoBkdAZQyVLSNOumgHTegDaAhHQJ5R5bqyGBZ1fZQoaAZHQGOVfVAiV0NoB03oA2gIR0CeVn+PzWf9dX2UKGgGR0BBoeeFtbcHaAdL6WgIR0CeWEsNUfgadX2UKGgGR0BkF+K/EfknaAdN6ANoCEdAnl6DG5tm+XV9lChoBkdAZGIKRdQfp2gHTegDaAhHQJ5fZ9tuUEB1fZQoaAZHQGKJqbz9S/FoB03oA2gIR0CeX9aQ3gk1dX2UKGgGR0BlmUFbFCLNaAdN6ANoCEdAnmFbpA2Q4nV9lChoBkdAZkFvze40/GgHTegDaAhHQJ5kZp48lol1fZQoaAZHQF84yeZof0VoB03oA2gIR0CeZKYTTOPedX2UKGgGR0BBGSwGGEf1aAdL0GgIR0CectkmhM8HdX2UKGgGR0BnH3hIe5nUaAdN6ANoCEdAnnhDHfdhzHV9lChoBkdAYUym0mdAgWgHTegDaAhHQJ56IAxSHdp1fZQoaAZHQGYJeL3sXzloB03oA2gIR0Ceit9ic5KfdX2UKGgGR0Bkl2Jk5IYnaAdN6ANoCEdAnox75ZbILnV9lChoBkdAY+Jv0AcT8GgHTegDaAhHQJ6OChnJ1aJ1fZQoaAZHQGg75ML4N7VoB03oA2gIR0CeklYYBNmEdX2UKGgGR0BMc1TJhfBvaAdL02gIR0Cek8CMPz4DdX2UKGgGR0AiyghbGFSLaAdL7GgIR0CemizQeFL4dX2UKGgGR0BhcfReC04SaAdN6ANoCEdAnpwcn7YTTXV9lChoBkdAY9fsvZh8Y2gHTegDaAhHQJ6chDw6QvJ1fZQoaAZHQGSx/jCHh0hoB03oA2gIR0CeoZWPLgXNdX2UKGgGR0Bj4AggX/HYaAdN6ANoCEdAnqQyngpBonV9lChoBkdAX4ZnpSrHVGgHTegDaAhHQJ6tVVT72td1fZQoaAZHQGBFeqrBCUpoB03oA2gIR0CerqGY8dPtdX2UKGgGR0BitlpM6BAfaAdN6ANoCEdAnq9C1qnFYXV9lChoBkdAZe45jH4oJGgHTegDaAhHQJ6xZnL7oB91fZQoaAZHQGS3B6rvLHNoB03oA2gIR0CetZENvwVkdX2UKGgGR0BllDncL0BfaAdN6ANoCEdAnsDNgjQiRnV9lChoBkdAY2fb2USqVGgHTegDaAhHQJ7GKKR+z+p1fZQoaAZHQGISVwHZ9NNoB03oA2gIR0Cexz+glF+edWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb7adfacfa7926bd03c3c82121bda3b75f812ff9be1a3fb117757c3024e50f17
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3dcbc41cc2dee6b1975b35f3d18e15a4c9572923cb3260131f50ec97117e2177
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (162 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 260.8643339, "std_reward": 17.555589469095757, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-13T19:34:36.726663"}
|