--- license: apache-2.0 base_model: google/electra-base-discriminator tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: electra-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.944 --- # electra-emotion This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1403 - Accuracy: 0.944 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6777 | 1.0 | 500 | 0.2635 | 0.9155 | | 0.186 | 2.0 | 1000 | 0.1598 | 0.935 | | 0.113 | 3.0 | 1500 | 0.1403 | 0.944 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0