Core scripts work 1:1
Browse files- scripts/core_example_multigpu.py +151 -0
- scripts/core_example_single_gpu.py +138 -0
- scripts/nlp_example.py +184 -0
scripts/core_example_multigpu.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import evaluate
|
17 |
+
import torch
|
18 |
+
from datasets import load_dataset
|
19 |
+
from torch.optim import AdamW
|
20 |
+
from torch.utils.data import DataLoader
|
21 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup
|
22 |
+
|
23 |
+
from accelerate import Accelerator, DistributedType
|
24 |
+
from accelerate.utils import set_seed
|
25 |
+
|
26 |
+
import transformers
|
27 |
+
|
28 |
+
transformers.logging.set_verbosity_error()
|
29 |
+
|
30 |
+
import os
|
31 |
+
from torch.nn.parallel import DistributedDataParallel
|
32 |
+
import torch.distributed as torch_distributed
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
def get_dataloaders(batch_size: int = 16):
|
37 |
+
"""
|
38 |
+
Creates a set of `DataLoader`s for the `glue` dataset,
|
39 |
+
using "bert-base-cased" as the tokenizer.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
accelerator (`Accelerator`):
|
43 |
+
An `Accelerator` object
|
44 |
+
batch_size (`int`, *optional*):
|
45 |
+
The batch size for the train and validation DataLoaders.
|
46 |
+
"""
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
|
48 |
+
datasets = load_dataset("glue", "mrpc")
|
49 |
+
|
50 |
+
def tokenize_function(examples):
|
51 |
+
outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None)
|
52 |
+
return outputs
|
53 |
+
|
54 |
+
tokenized_datasets = datasets.map(
|
55 |
+
tokenize_function,
|
56 |
+
batched=True,
|
57 |
+
remove_columns=["idx", "sentence1", "sentence2"],
|
58 |
+
)
|
59 |
+
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
|
60 |
+
|
61 |
+
def collate_fn(examples):
|
62 |
+
return tokenizer.pad(
|
63 |
+
examples,
|
64 |
+
padding="longest",
|
65 |
+
max_length=None,
|
66 |
+
pad_to_multiple_of=8,
|
67 |
+
return_tensors="pt",
|
68 |
+
)
|
69 |
+
|
70 |
+
train_dataloader = DataLoader(
|
71 |
+
tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size, drop_last=True
|
72 |
+
)
|
73 |
+
eval_dataloader = DataLoader(
|
74 |
+
tokenized_datasets["validation"],
|
75 |
+
shuffle=False,
|
76 |
+
collate_fn=collate_fn,
|
77 |
+
batch_size=32,
|
78 |
+
drop_last=False,
|
79 |
+
)
|
80 |
+
|
81 |
+
return train_dataloader, eval_dataloader
|
82 |
+
|
83 |
+
|
84 |
+
def training_function():
|
85 |
+
torch_distributed.init_process_group(backend="nccl")
|
86 |
+
num_processes = torch_distributed.get_world_size()
|
87 |
+
process_index = torch_distributed.get_rank()
|
88 |
+
local_process_index = int(os.environ.get("LOCAL_RANK", -1))
|
89 |
+
device = torch.device("cuda", local_process_index)
|
90 |
+
torch.cuda.set_device(device)
|
91 |
+
config = {"lr": 2e-5, "num_epochs": 3, "seed": 42}
|
92 |
+
seed = int(config["seed"])
|
93 |
+
batch_size = 32 # Check if this needs to be 32?
|
94 |
+
config["batch_size"] = batch_size
|
95 |
+
metric = evaluate.load("glue", "mrpc")
|
96 |
+
|
97 |
+
set_seed(seed, device_specific=False)
|
98 |
+
train_dataloader, eval_dataloader = get_dataloaders(batch_size)
|
99 |
+
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=True).to(device)
|
100 |
+
model = DistributedDataParallel(
|
101 |
+
model, device_ids=[local_process_index], output_device=local_process_index
|
102 |
+
)
|
103 |
+
|
104 |
+
optimizer = AdamW(params=model.parameters(), lr=config["lr"])
|
105 |
+
lr_scheduler = get_linear_schedule_with_warmup(
|
106 |
+
optimizer=optimizer,
|
107 |
+
num_warmup_steps=0,
|
108 |
+
num_training_steps=(len(train_dataloader) * config["num_epochs"]),
|
109 |
+
)
|
110 |
+
|
111 |
+
current_step = 0
|
112 |
+
for epoch in range(config["num_epochs"]):
|
113 |
+
model.train()
|
114 |
+
total_loss = 0
|
115 |
+
for _, batch in enumerate(train_dataloader):
|
116 |
+
batch = batch.to(device)
|
117 |
+
outputs = model(**batch)
|
118 |
+
loss = outputs.loss
|
119 |
+
total_loss += loss.detach().cpu().float()
|
120 |
+
current_step += 1
|
121 |
+
loss.backward()
|
122 |
+
optimizer.step()
|
123 |
+
lr_scheduler.step()
|
124 |
+
optimizer.zero_grad()
|
125 |
+
|
126 |
+
model.eval()
|
127 |
+
for step, batch in enumerate(eval_dataloader):
|
128 |
+
# We could avoid this line since we set the accelerator with `device_placement=True`.
|
129 |
+
batch = batch.to(device)
|
130 |
+
with torch.no_grad():
|
131 |
+
outputs = model(**batch)
|
132 |
+
predictions = outputs.logits.argmax(dim=-1)
|
133 |
+
metric.add_batch(
|
134 |
+
predictions=predictions,
|
135 |
+
references=batch["labels"],
|
136 |
+
)
|
137 |
+
|
138 |
+
eval_metric = metric.compute()
|
139 |
+
if process_index == 0:
|
140 |
+
print(
|
141 |
+
f"epoch {epoch}: {eval_metric}\n"
|
142 |
+
f"train_loss: {total_loss.item()/len(train_dataloader)}"
|
143 |
+
)
|
144 |
+
|
145 |
+
|
146 |
+
def main():
|
147 |
+
training_function()
|
148 |
+
|
149 |
+
|
150 |
+
if __name__ == "__main__":
|
151 |
+
main()
|
scripts/core_example_single_gpu.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import evaluate
|
17 |
+
import torch
|
18 |
+
from datasets import load_dataset
|
19 |
+
from torch.optim import AdamW
|
20 |
+
from torch.utils.data import DataLoader
|
21 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup
|
22 |
+
|
23 |
+
from accelerate import Accelerator, DistributedType
|
24 |
+
from accelerate.utils import set_seed
|
25 |
+
|
26 |
+
import transformers
|
27 |
+
|
28 |
+
transformers.logging.set_verbosity_error()
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
def get_dataloaders(batch_size: int = 16):
|
33 |
+
"""
|
34 |
+
Creates a set of `DataLoader`s for the `glue` dataset,
|
35 |
+
using "bert-base-cased" as the tokenizer.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
accelerator (`Accelerator`):
|
39 |
+
An `Accelerator` object
|
40 |
+
batch_size (`int`, *optional*):
|
41 |
+
The batch size for the train and validation DataLoaders.
|
42 |
+
"""
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
|
44 |
+
datasets = load_dataset("glue", "mrpc")
|
45 |
+
|
46 |
+
def tokenize_function(examples):
|
47 |
+
outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None)
|
48 |
+
return outputs
|
49 |
+
|
50 |
+
tokenized_datasets = datasets.map(
|
51 |
+
tokenize_function,
|
52 |
+
batched=True,
|
53 |
+
remove_columns=["idx", "sentence1", "sentence2"],
|
54 |
+
)
|
55 |
+
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
|
56 |
+
|
57 |
+
def collate_fn(examples):
|
58 |
+
return tokenizer.pad(
|
59 |
+
examples,
|
60 |
+
padding="longest",
|
61 |
+
max_length=None,
|
62 |
+
pad_to_multiple_of=8,
|
63 |
+
return_tensors="pt",
|
64 |
+
)
|
65 |
+
|
66 |
+
train_dataloader = DataLoader(
|
67 |
+
tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size, drop_last=True
|
68 |
+
)
|
69 |
+
eval_dataloader = DataLoader(
|
70 |
+
tokenized_datasets["validation"],
|
71 |
+
shuffle=False,
|
72 |
+
collate_fn=collate_fn,
|
73 |
+
batch_size=32,
|
74 |
+
drop_last=False,
|
75 |
+
)
|
76 |
+
|
77 |
+
return train_dataloader, eval_dataloader
|
78 |
+
|
79 |
+
|
80 |
+
def training_function():
|
81 |
+
config = {"lr": 2e-5, "num_epochs": 3, "seed": 42}
|
82 |
+
seed = int(config["seed"])
|
83 |
+
batch_size = 32
|
84 |
+
config["batch_size"] = batch_size
|
85 |
+
metric = evaluate.load("glue", "mrpc")
|
86 |
+
|
87 |
+
set_seed(seed, device_specific=False)
|
88 |
+
train_dataloader, eval_dataloader = get_dataloaders(batch_size)
|
89 |
+
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=True)
|
90 |
+
model.cuda()
|
91 |
+
|
92 |
+
optimizer = AdamW(params=model.parameters(), lr=config["lr"])
|
93 |
+
lr_scheduler = get_linear_schedule_with_warmup(
|
94 |
+
optimizer=optimizer,
|
95 |
+
num_warmup_steps=0,
|
96 |
+
num_training_steps=(len(train_dataloader) * config["num_epochs"]),
|
97 |
+
)
|
98 |
+
|
99 |
+
current_step = 0
|
100 |
+
for epoch in range(config["num_epochs"]):
|
101 |
+
model.train()
|
102 |
+
total_loss = 0
|
103 |
+
for _, batch in enumerate(train_dataloader):
|
104 |
+
batch = batch.to("cuda")
|
105 |
+
outputs = model(**batch)
|
106 |
+
loss = outputs.loss
|
107 |
+
total_loss += loss.detach().cpu().float()
|
108 |
+
current_step += 1
|
109 |
+
loss.backward()
|
110 |
+
optimizer.step()
|
111 |
+
lr_scheduler.step()
|
112 |
+
optimizer.zero_grad()
|
113 |
+
|
114 |
+
model.eval()
|
115 |
+
for step, batch in enumerate(eval_dataloader):
|
116 |
+
# We could avoid this line since we set the accelerator with `device_placement=True`.
|
117 |
+
batch = batch.to("cuda")
|
118 |
+
with torch.no_grad():
|
119 |
+
outputs = model(**batch)
|
120 |
+
predictions = outputs.logits.argmax(dim=-1)
|
121 |
+
metric.add_batch(
|
122 |
+
predictions=predictions,
|
123 |
+
references=batch["labels"],
|
124 |
+
)
|
125 |
+
|
126 |
+
eval_metric = metric.compute()
|
127 |
+
|
128 |
+
# Use accelerator.print to print only on the main process.
|
129 |
+
print(f"epoch {epoch}:", eval_metric)
|
130 |
+
print("train_loss: ", total_loss.item() / len(train_dataloader))
|
131 |
+
|
132 |
+
|
133 |
+
def main():
|
134 |
+
training_function()
|
135 |
+
|
136 |
+
|
137 |
+
if __name__ == "__main__":
|
138 |
+
main()
|
scripts/nlp_example.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import evaluate
|
17 |
+
import torch
|
18 |
+
from datasets import load_dataset
|
19 |
+
from torch.optim import AdamW
|
20 |
+
from torch.utils.data import DataLoader
|
21 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup
|
22 |
+
|
23 |
+
from accelerate import Accelerator, DistributedType
|
24 |
+
from accelerate.utils import set_seed
|
25 |
+
|
26 |
+
|
27 |
+
def get_dataloaders(accelerator: Accelerator, batch_size: int = 16):
|
28 |
+
"""
|
29 |
+
Creates a set of `DataLoader`s for the `glue` dataset,
|
30 |
+
using "bert-base-cased" as the tokenizer.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
accelerator (`Accelerator`):
|
34 |
+
An `Accelerator` object
|
35 |
+
batch_size (`int`, *optional*):
|
36 |
+
The batch size for the train and validation DataLoaders.
|
37 |
+
"""
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
|
39 |
+
datasets = load_dataset("glue", "mrpc")
|
40 |
+
|
41 |
+
def tokenize_function(examples):
|
42 |
+
# max_length=None => use the model max length (it's actually the default)
|
43 |
+
outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None)
|
44 |
+
return outputs
|
45 |
+
|
46 |
+
# Apply the method we just defined to all the examples in all the splits of the dataset
|
47 |
+
# starting with the main process first:
|
48 |
+
with accelerator.main_process_first():
|
49 |
+
tokenized_datasets = datasets.map(
|
50 |
+
tokenize_function,
|
51 |
+
batched=True,
|
52 |
+
remove_columns=["idx", "sentence1", "sentence2"],
|
53 |
+
)
|
54 |
+
|
55 |
+
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
|
56 |
+
# transformers library
|
57 |
+
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
|
58 |
+
|
59 |
+
def collate_fn(examples):
|
60 |
+
# On TPU it's best to pad everything to the same length or training will be very slow.
|
61 |
+
max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None
|
62 |
+
# When using mixed precision we want round multiples of 8/16
|
63 |
+
if accelerator.mixed_precision != "no":
|
64 |
+
pad_to_multiple_of = 8
|
65 |
+
else:
|
66 |
+
pad_to_multiple_of = None
|
67 |
+
|
68 |
+
return tokenizer.pad(
|
69 |
+
examples,
|
70 |
+
padding="longest",
|
71 |
+
max_length=max_length,
|
72 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
73 |
+
return_tensors="pt",
|
74 |
+
)
|
75 |
+
|
76 |
+
# Instantiate dataloaders.
|
77 |
+
train_dataloader = DataLoader(
|
78 |
+
tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size, drop_last=True
|
79 |
+
)
|
80 |
+
eval_dataloader = DataLoader(
|
81 |
+
tokenized_datasets["validation"],
|
82 |
+
shuffle=False,
|
83 |
+
collate_fn=collate_fn,
|
84 |
+
batch_size=32,
|
85 |
+
drop_last=(accelerator.mixed_precision == "fp8"),
|
86 |
+
)
|
87 |
+
|
88 |
+
return train_dataloader, eval_dataloader
|
89 |
+
|
90 |
+
|
91 |
+
def training_function(config):
|
92 |
+
# Initialize accelerator
|
93 |
+
accelerator = Accelerator(
|
94 |
+
mixed_precision="fp16",
|
95 |
+
log_with="aim",
|
96 |
+
project_dir="aim_logs"
|
97 |
+
)
|
98 |
+
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
|
99 |
+
lr = config["lr"]
|
100 |
+
num_epochs = int(config["num_epochs"])
|
101 |
+
seed = int(config["seed"])
|
102 |
+
batch_size = 16 if accelerator.num_processes > 1 else 32
|
103 |
+
config["batch_size"] = batch_size
|
104 |
+
metric = evaluate.load("glue", "mrpc")
|
105 |
+
|
106 |
+
set_seed(seed, device_specific=True)
|
107 |
+
train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size)
|
108 |
+
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=True)
|
109 |
+
lr = lr * accelerator.num_processes
|
110 |
+
|
111 |
+
optimizer = AdamW(params=model.parameters(), lr=lr)
|
112 |
+
lr_scheduler = get_linear_schedule_with_warmup(
|
113 |
+
optimizer=optimizer,
|
114 |
+
num_warmup_steps=0,
|
115 |
+
num_training_steps=(len(train_dataloader) * num_epochs),
|
116 |
+
)
|
117 |
+
|
118 |
+
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
|
119 |
+
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
|
120 |
+
)
|
121 |
+
|
122 |
+
accelerator.init_trackers(f'{accelerator.num_processes}_gpus', config)
|
123 |
+
|
124 |
+
current_step = 0
|
125 |
+
for epoch in range(num_epochs):
|
126 |
+
model.train()
|
127 |
+
total_loss = 0
|
128 |
+
for _, batch in enumerate(train_dataloader):
|
129 |
+
lr = lr_scheduler.get_lr()
|
130 |
+
outputs = model(**batch)
|
131 |
+
loss = outputs.loss
|
132 |
+
batch_loss = accelerator.gather(loss).detach().mean().cpu().float()
|
133 |
+
total_loss += batch_loss
|
134 |
+
current_step += 1
|
135 |
+
accelerator.log(
|
136 |
+
{
|
137 |
+
"batch_loss":batch_loss,
|
138 |
+
"learning_rate":lr,
|
139 |
+
},
|
140 |
+
step=current_step,
|
141 |
+
log_kwargs={"aim":{"epoch":epoch}}
|
142 |
+
)
|
143 |
+
accelerator.backward(loss)
|
144 |
+
optimizer.step()
|
145 |
+
lr_scheduler.step()
|
146 |
+
optimizer.zero_grad()
|
147 |
+
current_step += 1
|
148 |
+
|
149 |
+
model.eval()
|
150 |
+
for step, batch in enumerate(eval_dataloader):
|
151 |
+
# We could avoid this line since we set the accelerator with `device_placement=True`.
|
152 |
+
batch.to(accelerator.device)
|
153 |
+
with torch.no_grad():
|
154 |
+
outputs = model(**batch)
|
155 |
+
predictions = outputs.logits.argmax(dim=-1)
|
156 |
+
predictions, references = accelerator.gather_for_metrics((predictions, batch["labels"]))
|
157 |
+
metric.add_batch(
|
158 |
+
predictions=predictions,
|
159 |
+
references=references,
|
160 |
+
)
|
161 |
+
|
162 |
+
eval_metric = metric.compute()
|
163 |
+
|
164 |
+
# Use accelerator.print to print only on the main process.
|
165 |
+
accelerator.print(f"epoch {epoch}:", eval_metric)
|
166 |
+
|
167 |
+
accelerator.log(
|
168 |
+
{
|
169 |
+
"accuracy": eval_metric["accuracy"],
|
170 |
+
"f1": eval_metric["f1"],
|
171 |
+
"train_loss": total_loss.item() / len(train_dataloader),
|
172 |
+
},
|
173 |
+
log_kwargs = {"aim":{"epoch":epoch}}
|
174 |
+
)
|
175 |
+
accelerator.end_training()
|
176 |
+
|
177 |
+
|
178 |
+
def main():
|
179 |
+
config = {"lr": 2e-5, "num_epochs": 3, "seed": 42}
|
180 |
+
training_function(config)
|
181 |
+
|
182 |
+
|
183 |
+
if __name__ == "__main__":
|
184 |
+
main()
|