--- license: apache-2.0 tags: - whisper-event - generated_from_trainer - hf-asr-leaderboard datasets: - google/fleurs metrics: - wer model-index: - name: Whisper Medium Tajik results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs type: google/fleurs config: tg_tj split: test args: tg_tj metrics: - name: Wer type: wer value: 23.153018764230197 --- # Whisper Medium Tajik This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the google/fleurs tg_tj dataset. It achieves the following results on the evaluation set: - Loss: 0.9217 - Wer: 23.1530 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0016 | 66.0 | 1000 | 0.6929 | 24.2993 | | 0.0001 | 133.0 | 2000 | 0.8054 | 23.3022 | | 0.0001 | 199.0 | 3000 | 0.8652 | 23.2237 | | 0.0 | 266.0 | 4000 | 0.9019 | 23.2394 | | 0.0 | 333.0 | 5000 | 0.9217 | 23.1530 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2