asafaya commited on
Commit
b97696a
1 Parent(s): fc7b92b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -35
README.md CHANGED
@@ -6,7 +6,7 @@ datasets:
6
  metrics:
7
  - rouge
8
  model-index:
9
- - name: eval-mbart-large
10
  results:
11
  - task:
12
  name: Summarization
@@ -21,33 +21,20 @@ model-index:
21
  value: 46.7011
22
  ---
23
 
24
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
25
- should probably proofread and complete it, then remove this comment. -->
26
 
27
- # eval-mbart-large
28
 
29
  This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the mlsum tu dataset.
 
30
  It achieves the following results on the evaluation set:
31
- - Loss: 2.8386
32
  - Rouge1: 46.7011
33
  - Rouge2: 34.0087
34
  - Rougel: 41.5475
35
  - Rougelsum: 43.2108
36
- - Gen Len: 43.2426
37
-
38
- ## Model description
39
-
40
- More information needed
41
-
42
- ## Intended uses & limitations
43
-
44
- More information needed
45
 
46
- ## Training and evaluation data
47
-
48
- More information needed
49
-
50
- ## Training procedure
51
 
52
  ### Training hyperparameters
53
 
@@ -67,25 +54,22 @@ The following hyperparameters were used during training:
67
  - mixed_precision_training: Native AMP
68
  - label_smoothing_factor: 0.1
69
 
70
- ### Training results
71
-
72
- | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
73
- |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
74
- | 2.9098 | 1.0 | 3895 | 2.8820 | 45.2085 | 33.0253 | 40.3511 | 41.8378 | 40.1802 |
75
- | 2.7496 | 2.0 | 7790 | 2.8620 | 45.3455 | 33.0049 | 40.4574 | 41.9738 | 40.845 |
76
- | 2.6215 | 3.0 | 11685 | 2.8386 | 46.6642 | 34.0133 | 41.5102 | 43.1852 | 43.3505 |
77
- | 2.5031 | 4.0 | 15580 | 2.8620 | 46.5081 | 33.9028 | 41.5001 | 43.0841 | 42.4534 |
78
- | 2.3967 | 5.0 | 19475 | 2.8935 | 46.1029 | 33.4495 | 41.0557 | 42.7096 | 41.9169 |
79
- | 2.3161 | 6.0 | 23370 | 2.9255 | 46.0193 | 33.2904 | 40.9323 | 42.575 | 42.5379 |
80
- | 2.2348 | 7.0 | 27265 | 2.9692 | 46.4242 | 33.718 | 41.4037 | 43.0504 | 41.7957 |
81
- | 2.1716 | 8.0 | 31160 | 3.0044 | 46.1669 | 33.3276 | 40.9307 | 42.7015 | 42.8942 |
82
- | 2.1179 | 9.0 | 35055 | 3.0372 | 46.0666 | 33.2483 | 40.9372 | 42.6837 | 42.7636 |
83
- | 2.0753 | 10.0 | 38950 | 3.0627 | 46.1444 | 33.2551 | 40.9514 | 42.7096 | 42.9266 |
84
-
85
-
86
  ### Framework versions
87
 
88
  - Transformers 4.11.3
89
  - Pytorch 1.8.2+cu111
90
  - Datasets 1.14.0
91
  - Tokenizers 0.10.3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  metrics:
7
  - rouge
8
  model-index:
9
+ - name: mbart-large-turkish-sum
10
  results:
11
  - task:
12
  name: Summarization
 
21
  value: 46.7011
22
  ---
23
 
24
+ # [Mukayese: Turkish NLP Strikes Back](https://arxiv.org/abs/2203.01215)
 
25
 
26
+ ## Summarization: mukayese/mbart-large-turkish-sum
27
 
28
  This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the mlsum tu dataset.
29
+
30
  It achieves the following results on the evaluation set:
31
+
32
  - Rouge1: 46.7011
33
  - Rouge2: 34.0087
34
  - Rougel: 41.5475
35
  - Rougelsum: 43.2108
 
 
 
 
 
 
 
 
 
36
 
37
+ Check [this](https://arxiv.org/abs/2203.01215) paper for more details on the model and the dataset.
 
 
 
 
38
 
39
  ### Training hyperparameters
40
 
 
54
  - mixed_precision_training: Native AMP
55
  - label_smoothing_factor: 0.1
56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
  ### Framework versions
58
 
59
  - Transformers 4.11.3
60
  - Pytorch 1.8.2+cu111
61
  - Datasets 1.14.0
62
  - Tokenizers 0.10.3
63
+
64
+ ### Citation
65
+
66
+ ```
67
+ @misc{safaya-etal-2022-mukayese,
68
+ title={Mukayese: Turkish NLP Strikes Back},
69
+ author={Ali Safaya and Emirhan Kurtuluş and Arda Göktoğan and Deniz Yuret},
70
+ year={2022},
71
+ eprint={2203.01215},
72
+ archivePrefix={arXiv},
73
+ primaryClass={cs.CL}
74
+ }
75
+ ```