mus-shd commited on
Commit
14b392e
·
1 Parent(s): d4087e6

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 290.57 +/- 17.78
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fac575bff70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fac575c5040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fac575c50d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fac575c5160>", "_build": "<function ActorCriticPolicy._build at 0x7fac575c51f0>", "forward": "<function ActorCriticPolicy.forward at 0x7fac575c5280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fac575c5310>", "_predict": "<function ActorCriticPolicy._predict at 0x7fac575c53a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fac575c5430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fac575c54c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fac575c5550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fac575c0450>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673366740031841751, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3zmrxP1DO8FebMOt8IxTwDbpi98vefPQAAgD8AAIA/AFWHPTFp0z5G60u+t1isvhsM+Lxpc7u9AAAAAAAAAAB6TC0++RCQPyg23T69++S+IJetPo1poz4AAAAAAAAAAJphgTsU+IS6UktWM6H+qy8I12K5To/FswAAgD8AAIA/7XwkPgtymz9rq7E+m03lviy6lz4+gTk+AAAAAAAAAADNnrA8uSkfPgUX5D1ZDsC+gmmLPlo6Xb4AAAAAAAAAAGYm/rvh3I+6hZlCMye0li88stg6pePQswAAgD8AAIA/Gu+vPfbinz5akz6+EGuvvvWAgbx6O0W9AAAAAAAAAAAz+1691jyuPshuez2HGrG+VWb4vOJrnTwAAAAAAAAAAM2cnDupAUe8dpXHvLPWdz2vBEK9doS1vAAAgD8AAIA/ZmboO+EclbqmRj44C7QbM9pFvzmFnlu3AACAPwAAgD+zMVY+99uFP6N8tD7Ofuu+7K3fPo6bVz4AAAAAAAAAAM36mz0f56Q8RHIHvhk4Ub6CC1s+32+3vwAAAAAAAAAAmpLhPHumlrrY9VE6+0E3tiAkwrr4a3K5AACAPwAAgD8Abna8cYPBP5U6nr3gzuU9N8SPvaJEKr4AAAAAAAAAACYk7727eJ09iuorvpK7175S/PC+gycOPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBMjQsUPPcECUhpRSlIwBbJRL5IwBdJRHQKm35NKyv9t1fZQoaAZoCWgPQwgJwhVQKGRvQJSGlFKUaBVL0WgWR0Cpt+U2cawVdX2UKGgGaAloD0MIGAXB49uzckCUhpRSlGgVS/BoFkdAqbg1Dpkf93V9lChoBmgJaA9DCOTXD7EBJXFAlIaUUpRoFUvsaBZHQKm4g+GGmDV1fZQoaAZoCWgPQwgracU3FCBxQJSGlFKUaBVL6WgWR0CpuNHT7VJ+dX2UKGgGaAloD0MIhCwLJv4YcUCUhpRSlGgVS+loFkdAqbjh7RfF73V9lChoBmgJaA9DCEt319kQ2HFAlIaUUpRoFUvaaBZHQKm5KcFyJbd1fZQoaAZoCWgPQwiTjQdb7CpwQJSGlFKUaBVL5GgWR0CpuT5h8YygdX2UKGgGaAloD0MIvt798V5zcECUhpRSlGgVS+FoFkdAqblkJ8fFJnV9lChoBmgJaA9DCOfCSC8qhXBAlIaUUpRoFUvxaBZHQKm5q9L6DXh1fZQoaAZoCWgPQwhtPNhit9FuQJSGlFKUaBVL3GgWR0Cpua7CBPKudX2UKGgGaAloD0MIaM9lahLccUCUhpRSlGgVS95oFkdAqbnAsmOU+3V9lChoBmgJaA9DCLlRZK1h+nFAlIaUUpRoFUv1aBZHQKm6FmXgLql1fZQoaAZoCWgPQwjp19ZPv6xyQJSGlFKUaBVL52gWR0CpuiJFkQPJdX2UKGgGaAloD0MIT83lBoOyckCUhpRSlGgVTXoBaBZHQKm6Yt+1Bt11fZQoaAZoCWgPQwiWCb/UTx5vQJSGlFKUaBVL3WgWR0CpuoonSfDldX2UKGgGaAloD0MIorPMIhRbcECUhpRSlGgVS+RoFkdAqbqfjENvwXV9lChoBmgJaA9DCLppM04DI3JAlIaUUpRoFUv4aBZHQKm7L7E5yU91fZQoaAZoCWgPQwjFc7aA0NpwQJSGlFKUaBVLz2gWR0Cpu1zXSSeRdX2UKGgGaAloD0MIM40mF2NCbUCUhpRSlGgVS/doFkdAqbuBlMAWBXV9lChoBmgJaA9DCB7C+GlcmXJAlIaUUpRoFUvmaBZHQKm7ln3+MqB1fZQoaAZoCWgPQwht409U9g9wQJSGlFKUaBVL12gWR0Cpu7cbrC3xdX2UKGgGaAloD0MIkJ4ih4hbcUCUhpRSlGgVS95oFkdAqbv99Sde6nV9lChoBmgJaA9DCFQ2rKks3nBAlIaUUpRoFUvfaBZHQKm8SRlpXZJ1fZQoaAZoCWgPQwg0ngjiPJVvQJSGlFKUaBVL5WgWR0CpvHRkEs8QdX2UKGgGaAloD0MIHQJHAg2sb0CUhpRSlGgVS+toFkdAqbx0RpUPx3V9lChoBmgJaA9DCBGmKJcGnHNAlIaUUpRoFU0TAWgWR0CpvH97OVxCdX2UKGgGaAloD0MIz/QSY1kFckCUhpRSlGgVS+xoFkdAqbzwDaGpM3V9lChoBmgJaA9DCGhZ948FE3BAlIaUUpRoFUvxaBZHQKm889+PRzB1fZQoaAZoCWgPQwh1IsFUs3RxQJSGlFKUaBVL62gWR0CpvTc1O0swdX2UKGgGaAloD0MI7Ulgc46GcECUhpRSlGgVS+FoFkdAqb09e8f3e3V9lChoBmgJaA9DCKg2OBH9BG5AlIaUUpRoFUviaBZHQKm9WBe5Wil1fZQoaAZoCWgPQwilaOVeIOtyQJSGlFKUaBVL02gWR0Cpxzspw0fpdX2UKGgGaAloD0MIi+JV1vZ9ckCUhpRSlGgVS85oFkdAqceN7IDHO3V9lChoBmgJaA9DCHMOngnNpXNAlIaUUpRoFUvzaBZHQKnHyXTmW+p1fZQoaAZoCWgPQwiMLm8O16pxQJSGlFKUaBVL7mgWR0Cpx96URnOCdX2UKGgGaAloD0MIB0FHq9rMcUCUhpRSlGgVS+doFkdAqchPHNorWnV9lChoBmgJaA9DCCuiJvo8YXFAlIaUUpRoFUvUaBZHQKnIYAlv60p1fZQoaAZoCWgPQwh6HXHIRgdwQJSGlFKUaBVNBAFoFkdAqchfAmAskXV9lChoBmgJaA9DCLq/ety3I3RAlIaUUpRoFUvgaBZHQKnIvMGorFx1fZQoaAZoCWgPQwhXk6esJpllQJSGlFKUaBVN6ANoFkdAqcjFLrX18XV9lChoBmgJaA9DCD7qr1eYQHFAlIaUUpRoFUvqaBZHQKnI0txMnJF1fZQoaAZoCWgPQwjwTj49tpJzQJSGlFKUaBVNBAFoFkdAqckne7+T/3V9lChoBmgJaA9DCGbbaWsE3nNAlIaUUpRoFUvHaBZHQKnJNVYp2EF1fZQoaAZoCWgPQwjZJaq3RrRxQJSGlFKUaBVL62gWR0CpyVWoFV1fdX2UKGgGaAloD0MI+DJRhFR1cECUhpRSlGgVTQEBaBZHQKnJlsD4gzR1fZQoaAZoCWgPQwhmvoOfuBdzQJSGlFKUaBVL8mgWR0CpyajLr5ZbdX2UKGgGaAloD0MIaOif4GIDckCUhpRSlGgVS/hoFkdAqcnSPKdQPHV9lChoBmgJaA9DCJrRj4YTfnBAlIaUUpRoFUvsaBZHQKnKEUahpQF1fZQoaAZoCWgPQwhSY0LMpQ50QJSGlFKUaBVL5WgWR0CpypTfR/mUdX2UKGgGaAloD0MIg2kYPiK8b0CUhpRSlGgVS/doFkdAqcq7M1TBInV9lChoBmgJaA9DCJzc71DUTHBAlIaUUpRoFU0LAWgWR0CpysClSCOFdX2UKGgGaAloD0MIJlZGIx/BcUCUhpRSlGgVS81oFkdAqcrL2Bas63V9lChoBmgJaA9DCEhvuI9cQm9AlIaUUpRoFUvfaBZHQKnK/vES/TN1fZQoaAZoCWgPQwjQmbSp+ipxQJSGlFKUaBVL8GgWR0Cpyx21twaSdX2UKGgGaAloD0MI2eicn+IAcECUhpRSlGgVS9xoFkdAqctJKHwgDHV9lChoBmgJaA9DCLlVEANdinBAlIaUUpRoFUvjaBZHQKnLaIcinpB1fZQoaAZoCWgPQwgnE7cKYv5xQJSGlFKUaBVL8WgWR0Cpy31qN6w/dX2UKGgGaAloD0MIsmg6O9lmckCUhpRSlGgVS9poFkdAqcuiqyWzGHV9lChoBmgJaA9DCEZB8Pi2mnBAlIaUUpRoFUvvaBZHQKnLzQJHAh11fZQoaAZoCWgPQwjzkv/J36pvQJSGlFKUaBVL42gWR0CpzBYTj/+9dX2UKGgGaAloD0MIcqd0sP6bckCUhpRSlGgVS+ZoFkdAqcwvUDuBtnV9lChoBmgJaA9DCA4yychZX3FAlIaUUpRoFUvaaBZHQKnMOhTOxB51fZQoaAZoCWgPQwhOfotO1gh0QJSGlFKUaBVNEAFoFkdAqcxP36AOKHV9lChoBmgJaA9DCJvniHzX9XBAlIaUUpRoFU0GAWgWR0CpzOnWrfcfdX2UKGgGaAloD0MIdSLBVPNwcUCUhpRSlGgVS9xoFkdAqc0lsxfv4XV9lChoBmgJaA9DCGqhZHIqiHJAlIaUUpRoFUvuaBZHQKnNK2Ifr8l1fZQoaAZoCWgPQwjjpgaajz9xQJSGlFKUaBVL7GgWR0CpzUmJFb3XdX2UKGgGaAloD0MIPiR87+8XcECUhpRSlGgVS9ZoFkdAqc1OC5EtunV9lChoBmgJaA9DCN4AM98BAHJAlIaUUpRoFU0AAWgWR0CpzYPEsJ6ZdX2UKGgGaAloD0MI3/qw3mgucUCUhpRSlGgVS9toFkdAqc3PXRPXTXV9lChoBmgJaA9DCIC3QIJiIm5AlIaUUpRoFUv/aBZHQKnN6y8BdUt1fZQoaAZoCWgPQwjtRbQdU884QJSGlFKUaBVLmGgWR0CpzfMl9jPOdX2UKGgGaAloD0MIAWpq2ZoWckCUhpRSlGgVS/xoFkdAqc4SVGCqZXV9lChoBmgJaA9DCMA+OnWlrHBAlIaUUpRoFUvYaBZHQKnONS9/SYx1fZQoaAZoCWgPQwhhjEgUmsBxQJSGlFKUaBVL+2gWR0CpzkKNAC4jdX2UKGgGaAloD0MIsyeBzXmecUCUhpRSlGgVS/toFkdAqc5kVHnU2HV9lChoBmgJaA9DCLGlR1O9qHJAlIaUUpRoFUvIaBZHQKnOiornTy91fZQoaAZoCWgPQwjvxRftMSVxQJSGlFKUaBVL4mgWR0CpzqysCDEndX2UKGgGaAloD0MIjX40nDLNbkCUhpRSlGgVS/NoFkdAqc6+anaWX3V9lChoBmgJaA9DCHJw6ZjzeHJAlIaUUpRoFUvRaBZHQKnPiZzgdfd1fZQoaAZoCWgPQwh1yw7xT1ZyQJSGlFKUaBVL9mgWR0Cpz5z5XU6QdX2UKGgGaAloD0MIXB0AcVcsb0CUhpRSlGgVS+NoFkdAqc+jHQyAQXV9lChoBmgJaA9DCO30g7pI6nJAlIaUUpRoFUv6aBZHQKnP4B6KLsN1fZQoaAZoCWgPQwghj+BGCndxQJSGlFKUaBVL/mgWR0Cp0BDDsMRZdX2UKGgGaAloD0MIscOY9PeNckCUhpRSlGgVS79oFkdAqdAd61LJ0XV9lChoBmgJaA9DCDs0LEbdP3FAlIaUUpRoFUvtaBZHQKnQHZ26kIp1fZQoaAZoCWgPQwg9fQT+sENyQJSGlFKUaBVL2GgWR0Cp0CdZzPrwdX2UKGgGaAloD0MI3iBaK5oBckCUhpRSlGgVS9RoFkdAqdA5xtHhCXV9lChoBmgJaA9DCH1aRX9oLnJAlIaUUpRoFU0AAWgWR0Cp0KaK1og3dX2UKGgGaAloD0MIMbJkjmWlbkCUhpRSlGgVS+ZoFkdAqdC0/fO2RnV9lChoBmgJaA9DCLtE9daA/XFAlIaUUpRoFUvtaBZHQKnQu4oZydZ1fZQoaAZoCWgPQwgei21S0TZyQJSGlFKUaBVL4WgWR0Cp0Mwb2lEadX2UKGgGaAloD0MI6Zyf4nhdc0CUhpRSlGgVS91oFkdAqdDneFcps3V9lChoBmgJaA9DCC47xD/s43JAlIaUUpRoFUvNaBZHQKnQ8wxFiKB1fZQoaAZoCWgPQwjYKOs3k4NvQJSGlFKUaBVL8GgWR0Cp0TNz0Yj0dX2UKGgGaAloD0MIotKImf3Xb0CUhpRSlGgVS9loFkdAqdHy3d9DyHV9lChoBmgJaA9DCISdYtWgdXNAlIaUUpRoFUvgaBZHQKnR91mJ3xF1fZQoaAZoCWgPQwgG9phIqZ1zQJSGlFKUaBVL4WgWR0Cp0hCA2AG0dX2UKGgGaAloD0MIGeWZl0ObcUCUhpRSlGgVS9loFkdAqdI2p0fYBnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 740, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ef4846fe1c7c2535c77a4289aea8d7521d0e9131bc8fe7a3a54a637d911be8c
3
+ size 147102
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fac575bff70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fac575c5040>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fac575c50d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fac575c5160>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fac575c51f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fac575c5280>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fac575c5310>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fac575c53a0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fac575c5430>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fac575c54c0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fac575c5550>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fac575c0450>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 2015232,
46
+ "_total_timesteps": 2000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673366740031841751,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3zmrxP1DO8FebMOt8IxTwDbpi98vefPQAAgD8AAIA/AFWHPTFp0z5G60u+t1isvhsM+Lxpc7u9AAAAAAAAAAB6TC0++RCQPyg23T69++S+IJetPo1poz4AAAAAAAAAAJphgTsU+IS6UktWM6H+qy8I12K5To/FswAAgD8AAIA/7XwkPgtymz9rq7E+m03lviy6lz4+gTk+AAAAAAAAAADNnrA8uSkfPgUX5D1ZDsC+gmmLPlo6Xb4AAAAAAAAAAGYm/rvh3I+6hZlCMye0li88stg6pePQswAAgD8AAIA/Gu+vPfbinz5akz6+EGuvvvWAgbx6O0W9AAAAAAAAAAAz+1691jyuPshuez2HGrG+VWb4vOJrnTwAAAAAAAAAAM2cnDupAUe8dpXHvLPWdz2vBEK9doS1vAAAgD8AAIA/ZmboO+EclbqmRj44C7QbM9pFvzmFnlu3AACAPwAAgD+zMVY+99uFP6N8tD7Ofuu+7K3fPo6bVz4AAAAAAAAAAM36mz0f56Q8RHIHvhk4Ub6CC1s+32+3vwAAAAAAAAAAmpLhPHumlrrY9VE6+0E3tiAkwrr4a3K5AACAPwAAgD8Abna8cYPBP5U6nr3gzuU9N8SPvaJEKr4AAAAAAAAAACYk7727eJ09iuorvpK7175S/PC+gycOPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.007616000000000067,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVKBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBMjQsUPPcECUhpRSlIwBbJRL5IwBdJRHQKm35NKyv9t1fZQoaAZoCWgPQwgJwhVQKGRvQJSGlFKUaBVL0WgWR0Cpt+U2cawVdX2UKGgGaAloD0MIGAXB49uzckCUhpRSlGgVS/BoFkdAqbg1Dpkf93V9lChoBmgJaA9DCOTXD7EBJXFAlIaUUpRoFUvsaBZHQKm4g+GGmDV1fZQoaAZoCWgPQwgracU3FCBxQJSGlFKUaBVL6WgWR0CpuNHT7VJ+dX2UKGgGaAloD0MIhCwLJv4YcUCUhpRSlGgVS+loFkdAqbjh7RfF73V9lChoBmgJaA9DCEt319kQ2HFAlIaUUpRoFUvaaBZHQKm5KcFyJbd1fZQoaAZoCWgPQwiTjQdb7CpwQJSGlFKUaBVL5GgWR0CpuT5h8YygdX2UKGgGaAloD0MIvt798V5zcECUhpRSlGgVS+FoFkdAqblkJ8fFJnV9lChoBmgJaA9DCOfCSC8qhXBAlIaUUpRoFUvxaBZHQKm5q9L6DXh1fZQoaAZoCWgPQwhtPNhit9FuQJSGlFKUaBVL3GgWR0Cpua7CBPKudX2UKGgGaAloD0MIaM9lahLccUCUhpRSlGgVS95oFkdAqbnAsmOU+3V9lChoBmgJaA9DCLlRZK1h+nFAlIaUUpRoFUv1aBZHQKm6FmXgLql1fZQoaAZoCWgPQwjp19ZPv6xyQJSGlFKUaBVL52gWR0CpuiJFkQPJdX2UKGgGaAloD0MIT83lBoOyckCUhpRSlGgVTXoBaBZHQKm6Yt+1Bt11fZQoaAZoCWgPQwiWCb/UTx5vQJSGlFKUaBVL3WgWR0CpuoonSfDldX2UKGgGaAloD0MIorPMIhRbcECUhpRSlGgVS+RoFkdAqbqfjENvwXV9lChoBmgJaA9DCLppM04DI3JAlIaUUpRoFUv4aBZHQKm7L7E5yU91fZQoaAZoCWgPQwjFc7aA0NpwQJSGlFKUaBVLz2gWR0Cpu1zXSSeRdX2UKGgGaAloD0MIM40mF2NCbUCUhpRSlGgVS/doFkdAqbuBlMAWBXV9lChoBmgJaA9DCB7C+GlcmXJAlIaUUpRoFUvmaBZHQKm7ln3+MqB1fZQoaAZoCWgPQwht409U9g9wQJSGlFKUaBVL12gWR0Cpu7cbrC3xdX2UKGgGaAloD0MIkJ4ih4hbcUCUhpRSlGgVS95oFkdAqbv99Sde6nV9lChoBmgJaA9DCFQ2rKks3nBAlIaUUpRoFUvfaBZHQKm8SRlpXZJ1fZQoaAZoCWgPQwg0ngjiPJVvQJSGlFKUaBVL5WgWR0CpvHRkEs8QdX2UKGgGaAloD0MIHQJHAg2sb0CUhpRSlGgVS+toFkdAqbx0RpUPx3V9lChoBmgJaA9DCBGmKJcGnHNAlIaUUpRoFU0TAWgWR0CpvH97OVxCdX2UKGgGaAloD0MIz/QSY1kFckCUhpRSlGgVS+xoFkdAqbzwDaGpM3V9lChoBmgJaA9DCGhZ948FE3BAlIaUUpRoFUvxaBZHQKm889+PRzB1fZQoaAZoCWgPQwh1IsFUs3RxQJSGlFKUaBVL62gWR0CpvTc1O0swdX2UKGgGaAloD0MI7Ulgc46GcECUhpRSlGgVS+FoFkdAqb09e8f3e3V9lChoBmgJaA9DCKg2OBH9BG5AlIaUUpRoFUviaBZHQKm9WBe5Wil1fZQoaAZoCWgPQwilaOVeIOtyQJSGlFKUaBVL02gWR0Cpxzspw0fpdX2UKGgGaAloD0MIi+JV1vZ9ckCUhpRSlGgVS85oFkdAqceN7IDHO3V9lChoBmgJaA9DCHMOngnNpXNAlIaUUpRoFUvzaBZHQKnHyXTmW+p1fZQoaAZoCWgPQwiMLm8O16pxQJSGlFKUaBVL7mgWR0Cpx96URnOCdX2UKGgGaAloD0MIB0FHq9rMcUCUhpRSlGgVS+doFkdAqchPHNorWnV9lChoBmgJaA9DCCuiJvo8YXFAlIaUUpRoFUvUaBZHQKnIYAlv60p1fZQoaAZoCWgPQwh6HXHIRgdwQJSGlFKUaBVNBAFoFkdAqchfAmAskXV9lChoBmgJaA9DCLq/ety3I3RAlIaUUpRoFUvgaBZHQKnIvMGorFx1fZQoaAZoCWgPQwhXk6esJpllQJSGlFKUaBVN6ANoFkdAqcjFLrX18XV9lChoBmgJaA9DCD7qr1eYQHFAlIaUUpRoFUvqaBZHQKnI0txMnJF1fZQoaAZoCWgPQwjwTj49tpJzQJSGlFKUaBVNBAFoFkdAqckne7+T/3V9lChoBmgJaA9DCGbbaWsE3nNAlIaUUpRoFUvHaBZHQKnJNVYp2EF1fZQoaAZoCWgPQwjZJaq3RrRxQJSGlFKUaBVL62gWR0CpyVWoFV1fdX2UKGgGaAloD0MI+DJRhFR1cECUhpRSlGgVTQEBaBZHQKnJlsD4gzR1fZQoaAZoCWgPQwhmvoOfuBdzQJSGlFKUaBVL8mgWR0CpyajLr5ZbdX2UKGgGaAloD0MIaOif4GIDckCUhpRSlGgVS/hoFkdAqcnSPKdQPHV9lChoBmgJaA9DCJrRj4YTfnBAlIaUUpRoFUvsaBZHQKnKEUahpQF1fZQoaAZoCWgPQwhSY0LMpQ50QJSGlFKUaBVL5WgWR0CpypTfR/mUdX2UKGgGaAloD0MIg2kYPiK8b0CUhpRSlGgVS/doFkdAqcq7M1TBInV9lChoBmgJaA9DCJzc71DUTHBAlIaUUpRoFU0LAWgWR0CpysClSCOFdX2UKGgGaAloD0MIJlZGIx/BcUCUhpRSlGgVS81oFkdAqcrL2Bas63V9lChoBmgJaA9DCEhvuI9cQm9AlIaUUpRoFUvfaBZHQKnK/vES/TN1fZQoaAZoCWgPQwjQmbSp+ipxQJSGlFKUaBVL8GgWR0Cpyx21twaSdX2UKGgGaAloD0MI2eicn+IAcECUhpRSlGgVS9xoFkdAqctJKHwgDHV9lChoBmgJaA9DCLlVEANdinBAlIaUUpRoFUvjaBZHQKnLaIcinpB1fZQoaAZoCWgPQwgnE7cKYv5xQJSGlFKUaBVL8WgWR0Cpy31qN6w/dX2UKGgGaAloD0MIsmg6O9lmckCUhpRSlGgVS9poFkdAqcuiqyWzGHV9lChoBmgJaA9DCEZB8Pi2mnBAlIaUUpRoFUvvaBZHQKnLzQJHAh11fZQoaAZoCWgPQwjzkv/J36pvQJSGlFKUaBVL42gWR0CpzBYTj/+9dX2UKGgGaAloD0MIcqd0sP6bckCUhpRSlGgVS+ZoFkdAqcwvUDuBtnV9lChoBmgJaA9DCA4yychZX3FAlIaUUpRoFUvaaBZHQKnMOhTOxB51fZQoaAZoCWgPQwhOfotO1gh0QJSGlFKUaBVNEAFoFkdAqcxP36AOKHV9lChoBmgJaA9DCJvniHzX9XBAlIaUUpRoFU0GAWgWR0CpzOnWrfcfdX2UKGgGaAloD0MIdSLBVPNwcUCUhpRSlGgVS9xoFkdAqc0lsxfv4XV9lChoBmgJaA9DCGqhZHIqiHJAlIaUUpRoFUvuaBZHQKnNK2Ifr8l1fZQoaAZoCWgPQwjjpgaajz9xQJSGlFKUaBVL7GgWR0CpzUmJFb3XdX2UKGgGaAloD0MIPiR87+8XcECUhpRSlGgVS9ZoFkdAqc1OC5EtunV9lChoBmgJaA9DCN4AM98BAHJAlIaUUpRoFU0AAWgWR0CpzYPEsJ6ZdX2UKGgGaAloD0MI3/qw3mgucUCUhpRSlGgVS9toFkdAqc3PXRPXTXV9lChoBmgJaA9DCIC3QIJiIm5AlIaUUpRoFUv/aBZHQKnN6y8BdUt1fZQoaAZoCWgPQwjtRbQdU884QJSGlFKUaBVLmGgWR0CpzfMl9jPOdX2UKGgGaAloD0MIAWpq2ZoWckCUhpRSlGgVS/xoFkdAqc4SVGCqZXV9lChoBmgJaA9DCMA+OnWlrHBAlIaUUpRoFUvYaBZHQKnONS9/SYx1fZQoaAZoCWgPQwhhjEgUmsBxQJSGlFKUaBVL+2gWR0CpzkKNAC4jdX2UKGgGaAloD0MIsyeBzXmecUCUhpRSlGgVS/toFkdAqc5kVHnU2HV9lChoBmgJaA9DCLGlR1O9qHJAlIaUUpRoFUvIaBZHQKnOiornTy91fZQoaAZoCWgPQwjvxRftMSVxQJSGlFKUaBVL4mgWR0CpzqysCDEndX2UKGgGaAloD0MIjX40nDLNbkCUhpRSlGgVS/NoFkdAqc6+anaWX3V9lChoBmgJaA9DCHJw6ZjzeHJAlIaUUpRoFUvRaBZHQKnPiZzgdfd1fZQoaAZoCWgPQwh1yw7xT1ZyQJSGlFKUaBVL9mgWR0Cpz5z5XU6QdX2UKGgGaAloD0MIXB0AcVcsb0CUhpRSlGgVS+NoFkdAqc+jHQyAQXV9lChoBmgJaA9DCO30g7pI6nJAlIaUUpRoFUv6aBZHQKnP4B6KLsN1fZQoaAZoCWgPQwghj+BGCndxQJSGlFKUaBVL/mgWR0Cp0BDDsMRZdX2UKGgGaAloD0MIscOY9PeNckCUhpRSlGgVS79oFkdAqdAd61LJ0XV9lChoBmgJaA9DCDs0LEbdP3FAlIaUUpRoFUvtaBZHQKnQHZ26kIp1fZQoaAZoCWgPQwg9fQT+sENyQJSGlFKUaBVL2GgWR0Cp0CdZzPrwdX2UKGgGaAloD0MI3iBaK5oBckCUhpRSlGgVS9RoFkdAqdA5xtHhCXV9lChoBmgJaA9DCH1aRX9oLnJAlIaUUpRoFU0AAWgWR0Cp0KaK1og3dX2UKGgGaAloD0MIMbJkjmWlbkCUhpRSlGgVS+ZoFkdAqdC0/fO2RnV9lChoBmgJaA9DCLtE9daA/XFAlIaUUpRoFUvtaBZHQKnQu4oZydZ1fZQoaAZoCWgPQwgei21S0TZyQJSGlFKUaBVL4WgWR0Cp0Mwb2lEadX2UKGgGaAloD0MI6Zyf4nhdc0CUhpRSlGgVS91oFkdAqdDneFcps3V9lChoBmgJaA9DCC47xD/s43JAlIaUUpRoFUvNaBZHQKnQ8wxFiKB1fZQoaAZoCWgPQwjYKOs3k4NvQJSGlFKUaBVL8GgWR0Cp0TNz0Yj0dX2UKGgGaAloD0MIotKImf3Xb0CUhpRSlGgVS9loFkdAqdHy3d9DyHV9lChoBmgJaA9DCISdYtWgdXNAlIaUUpRoFUvgaBZHQKnR91mJ3xF1fZQoaAZoCWgPQwgG9phIqZ1zQJSGlFKUaBVL4WgWR0Cp0hCA2AG0dX2UKGgGaAloD0MIGeWZl0ObcUCUhpRSlGgVS9loFkdAqdI2p0fYBnVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 740,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:795a783a089b7a123067a018f2ed85cb37f9f876ff771bc4af43d527531319d1
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5a74176cf3be6f8ac967e1a2cb6e7039c5fe83f9fd590620d2122b6e4e2567e
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (189 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 290.56619800301365, "std_reward": 17.7807962533092, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-10T16:46:40.797702"}