--- license: apache-2.0 base_model: distilbert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: multilingual-clickbait-detector results: [] --- # multilingual-clickbait-detector This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1283 - Accuracy: 0.9596 - F1: 0.9619 - Precision: 0.9581 - Recall: 0.9658 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0659 | 1.0 | 3787 | 0.1147 | 0.9627 | 0.9650 | 0.9576 | 0.9726 | | 0.0245 | 2.0 | 7574 | 0.1841 | 0.9637 | 0.9659 | 0.9588 | 0.9732 | | 0.0115 | 3.0 | 11361 | 0.2095 | 0.9645 | 0.9665 | 0.9651 | 0.9678 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1