File size: 4,290 Bytes
197ce61
 
4f084da
 
5204768
4f084da
5204768
4f084da
5204768
 
4c61c18
5204768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d134d40
 
197ce61
4f084da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5204768
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: mit
base_model: urduhack/roberta-urdu-small
tags:
- generated_from_trainer
datasets:
- wikiann
model-index:
- name: UrduNER
  results: []
widget:
- text: ون ڈے رینکنگ میں پاکستان پہلے نمبر پر ہے۔
  example_title: Sentence_1
- text: >-
    کراچی کا پورٹ فاؤنٹین پوری قوت سے کام کرتے ہوئے 620 فٹ کی بلندی تک پہنچ جاتا
    ہے۔ یہ کراچی کے قریب واقع اویسٹر راکس کے قریب واقع ہے۔
  example_title: Sentence_2
- text: >-
    علی عثمان طحہ (جس کا ترجمہ 'عثمان' یا 'عثمان' بھی ہے) 1998 سے اب تک سوڈان کے
    پہلے نائب صدر رہے ہیں۔ وہ نائب صدر بننے سے پہلے تین سال تک ملک کے وزیر خارجہ
    تھے اور نیشنل کانگریس پارٹی (سوڈان) کے رکن ہیں۔ طحہ یونیورسٹی آف خرطوم میں
    قانون کی فیکلٹی سے فارغ التحصیل ہیں اور اپنی علمی قابلیت کے لیے مشہور تھے۔
    اس کے بعد انہوں نے ایک پرائیویٹ لاء پریکٹس قائم کی اور پھر 80 کی دہائی میں
    سوڈان کی پارلیمنٹ کے ممبر کی حیثیت سے جج کے عہدے پر فائز ہونے سے پہلے سیاست
    میں قدم رکھا۔ طحہ اور جان گارانگ کو سوڈان کے جامع امن معاہدے کے شریک معمار
    ہونے کا اعزاز دیا جاتا ہے جس نے 9 جنوری 2005 کو افریقہ کی طویل ترین خانہ
    جنگی کا خاتمہ کیا۔ وزیر اعظم احمد نظیف کی طرف سے مصری فریق اور دونوں ممالک
    کے وزراء شامل ہیں اور اس کا مقصد دونوں ممالک کے درمیان تعاون کو موثر بنانا
    ہے۔
  example_title: Sentence_3
language:
- ur
metrics:
- seqeval
---


# UrduNER

This model is a fine-tuned version of [urduhack/roberta-urdu-small](https://huggingface.co/urduhack/roberta-urdu-small) on the wikiann dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1163
- Overall Precision: 0.9540
- Overall Recall: 0.9553
- Overall F1: 0.9546
- Overall Accuracy: 0.9836
- Loc F1: 0.9643
- Org F1: 0.9448
- Per F1: 0.9491

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7

### Training results

| Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Loc F1 | Org F1 | Per F1 |
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:------:|:------:|:------:|
| 0.248         | 1.0   | 1250 | 0.0920          | 0.8906            | 0.8991         | 0.8948     | 0.9687           | 0.9086 | 0.8686 | 0.8995 |
| 0.1169        | 2.0   | 2500 | 0.0761          | 0.9302            | 0.9390         | 0.9346     | 0.9791           | 0.9501 | 0.9045 | 0.9400 |
| 0.07          | 3.0   | 3750 | 0.0831          | 0.9394            | 0.9451         | 0.9422     | 0.9805           | 0.9505 | 0.9348 | 0.9361 |
| 0.029         | 4.0   | 5000 | 0.1102          | 0.9311            | 0.9431         | 0.9371     | 0.9784           | 0.9469 | 0.9305 | 0.9279 |
| 0.0134        | 5.0   | 6250 | 0.1225          | 0.9442            | 0.9519         | 0.9480     | 0.9820           | 0.9593 | 0.9438 | 0.9337 |
| 0.0107        | 6.0   | 7500 | 0.1087          | 0.9515            | 0.9566         | 0.9541     | 0.9837           | 0.9660 | 0.9423 | 0.9466 |
| 0.005         | 7.0   | 8750 | 0.1163          | 0.9540            | 0.9553         | 0.9546     | 0.9836           | 0.9643 | 0.9448 | 0.9491 |


### Framework versions

- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3