File size: 1,796 Bytes
4b6e9f3
 
 
 
 
 
5d817f7
4b6e9f3
7818e94
add0c5e
 
 
 
7818e94
add0c5e
 
 
4b6e9f3
 
 
 
 
5d817f7
4b6e9f3
add0c5e
4b6e9f3
371ea5d
4b6e9f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
371ea5d
 
 
 
 
4b6e9f3
 
 
 
 
 
 
add0c5e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
license: mit
base_model: urduhack/roberta-urdu-small
tags:
- generated_from_trainer
model-index:
- name: UrduSentimentClassification
  results: []
widget:
- text: >-
    وی این ایچ کی سالانہ خالص فروخت تقریبا 5 ملین یورو ہے اور اس میں 21 افراد
    کام کرتے ہیں۔
  example_title: Neutral Example
- text: تاہم مالی بحران کی وجہ سے ترقیاتی مارجن میں کمی آئی ہے۔
  example_title: Negative Example
datasets:
- mwz/ur_financial_phrasebank
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# UrduSentimentClassification

This model is a fine-tuned version of [urduhack/roberta-urdu-small](https://huggingface.co/urduhack/roberta-urdu-small) on Financial dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4924

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.4931        | 1.96  | 500  | 0.5585          |
| 0.2415        | 3.92  | 1000 | 0.3782          |
| 0.1116        | 5.88  | 1500 | 0.6486          |
| 0.0357        | 7.84  | 2000 | 0.4853          |
| 0.0101        | 9.8   | 2500 | 0.4924          |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0