import torch from transformers import AutoTokenizer, AutoConfig, AutoModel, CLIPImageProcessor import warnings from PIL import Image from .base import BaseModel from ..smp import * from ..dataset import DATASET_TYPE import pandas as pd import string import torch.distributed as dist import torchvision.transforms as T import transformers from torchvision.transforms.functional import InterpolationMode import re IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) def build_transform(input_size): MEAN, STD = IMAGENET_MEAN, IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=5, max_num=6, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images, target_aspect_ratio def dynamic_preprocess2(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False, prior_aspect_ratio=None): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) new_target_ratios = [] if prior_aspect_ratio is not None: for i in target_ratios: if i[0]==1 and prior_aspect_ratio[1]%i[1] !=0: new_target_ratios.append(i) elif i[1]==1 and prior_aspect_ratio[0]%i[0] !=0: new_target_ratios.append(i) elif prior_aspect_ratio[0]%i[0] !=0 or prior_aspect_ratio[1]%i[1] !=0: new_target_ratios.append(i) else: continue # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, new_target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def load_image(image_file, input_size=448, min_num=1, max_num=6): image = Image.open(image_file).convert('RGB') transform = build_transform(input_size=input_size) images, target_aspect_ratio = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, min_num=min_num, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) return pixel_values, target_aspect_ratio def load_image2(image_file, input_size=448, target_aspect_ratio=(1,1), min_num=1, max_num=6): image = Image.open(image_file).convert('RGB') transform = build_transform(input_size=input_size) images = dynamic_preprocess2(image, image_size=input_size, prior_aspect_ratio=target_aspect_ratio, use_thumbnail=True, min_num=min_num, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) return pixel_values # This function is used to split InternVL2-Llama3-76B def split_model(model_name): import math device_map = {} num_gpus = torch.cuda.device_count() rank, world_size = get_rank_and_world_size() num_gpus = num_gpus // world_size num_layers = {'InternVL2-8B': 32, 'InternVL2-26B': 48, 'InternVL2-40B': 60, 'InternVL2-Llama3-76B': 80}[model_name] # Since the first GPU will be used for ViT, treat it as 0.8 GPU. num_layers_per_gpu = math.ceil(num_layers / (num_gpus - 0.2)) num_layers_per_gpu = [num_layers_per_gpu] * num_gpus num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.8) layer_cnt = 0 for i, num_layer in enumerate(num_layers_per_gpu): for j in range(num_layer): device_map[f'language_model.model.layers.{layer_cnt}'] = rank + world_size * i layer_cnt += 1 device_map['vision_model'] = rank device_map['mlp1'] = rank device_map['language_model.model.tok_embeddings'] = rank device_map['language_model.model.embed_tokens'] = rank device_map['language_model.output'] = rank device_map['language_model.model.norm'] = rank device_map['language_model.lm_head'] = rank device_map[f'language_model.model.layers.{num_layers - 1}'] = rank return device_map class InternVLChat(BaseModel): INSTALL_REQ = False INTERLEAVE = True def __init__(self, model_path='OpenGVLab/InternVL-Chat-V1-5', load_in_8bit=False, version='V1.0', **kwargs): assert model_path is not None assert version_cmp(transformers.__version__, '4.36.2', 'ge') self.model_path = model_path self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False) # Regular expression to match the pattern 'Image' followed by a number, e.g. Image1 self.pattern = r'Image(\d+)' # Replacement pattern to insert a hyphen between 'Image' and the number, e.g. Image-1 self.replacement = r'Image-\1' # Convert InternVL2 response to dataset format # e.g. Image1 -> Image-1 # Regular expression to match the pattern 'Image-' followed by a number self.reverse_pattern = r'Image-(\d+)' # Replacement pattern to remove the hyphen (Image-1 -> Image1) self.reverse_replacement = r'Image\1' if listinstr(['InternVL2-Llama3-76B'], model_path): device_map = split_model(model_path.split('/')[-1]) self.model = AutoModel.from_pretrained( model_path, torch_dtype=torch.bfloat16, load_in_8bit=load_in_8bit, trust_remote_code=True, low_cpu_mem_usage=True, device_map=device_map).eval() else: device = torch.cuda.current_device() self.device = device self.model = AutoModel.from_pretrained( model_path, torch_dtype=torch.bfloat16, trust_remote_code=True, load_in_8bit=load_in_8bit).eval() if not load_in_8bit: self.model = self.model.to(device) self.image_size = self.model.config.vision_config.image_size self.version = version self.kwargs = kwargs warnings.warn(f'Following kwargs received: {self.kwargs}, will use as generation config. ') def use_custom_prompt(self, dataset): if dataset is not None and listinstr(['MMDU'], dataset): # For Multi-Turn we don't have custom prompt return False else: return True def build_multi_choice_prompt(self, line, dataset=None): question = line['question'] hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None if hint is not None: question = hint + '\n' + question options = { cand: line[cand] for cand in string.ascii_uppercase if cand in line and not pd.isna(line[cand]) } for key, item in options.items(): question += f'\n{key}. {item}' prompt = question if len(options): prompt += '\n请直接回答选项字母。' if cn_string( prompt) else "\nAnswer with the option's letter from the given choices directly." else: prompt += '\n请直接回答问题。' if cn_string(prompt) else '\nAnswer the question directly.' return prompt def build_video_prompt(self, prompt, dataset=None, max_nframe=64): for start in range(0, max_nframe, 8): images_to_remove = ''.join([f'' for i in range(start + 1, start + 9)]) prompt = prompt.replace(images_to_remove, '') for i in range(max_nframe): prompt = prompt.replace(f'', f'Frame{i + 1}') if listinstr(['MMBench-Video'], dataset): prompt = prompt.replace('\nAnswer:', '') prompt += '\nAnswer the question using a single word or phrase.' elif listinstr(['Video-MME'], dataset): prompt = prompt.replace('\nAnswer:', '') prompt += "\nAnswer with the option's letter from the given choices directly." return prompt def build_prompt(self, line, dataset=None): assert self.use_custom_prompt(dataset) assert dataset is None or isinstance(dataset, str) tgt_path = self.dump_image(line, dataset) if self.version == 'V1.1': kwargs_default = dict(do_sample=False, max_new_tokens=1024, top_p=None, num_beams=5) else: kwargs_default = dict(do_sample=False, max_new_tokens=1024, top_p=None, num_beams=1) self.kwargs = kwargs_default if dataset is not None and listinstr(['MME'], dataset): question = line['question'] prompt = question + ' Answer the question using a single word or phrase.' elif dataset is not None and listinstr(['HallusionBench'], dataset): question = line['question'] prompt = question + ' Please answer yes or no. Answer the question using a single word or phrase.' elif dataset is not None and DATASET_TYPE(dataset) == 'MCQ': prompt = self.build_multi_choice_prompt(line, dataset) elif dataset is not None and DATASET_TYPE(dataset) == 'VQA': if listinstr(['MathVista', 'MathVision'], dataset): prompt = line['question'] elif listinstr(['LLaVABench'], dataset): question = line['question'] prompt = question + '\nAnswer this question in detail.' elif listinstr(['MMVet'], dataset): prompt = line['question'] else: question = line['question'] prompt = question + '\nAnswer the question using a single word or phrase.' else: prompt = line['question'] message = [dict(type='text', value=prompt)] message.extend([dict(type='image', value=s) for s in tgt_path]) return message def set_max_num(self, dataset): if dataset is not None and listinstr(['ChartQA_TEST'], dataset): self.max_num = 12 self.max_num2 = 3 elif dataset is not None and listinstr(['DocVQA_VAL', 'DocVQA_TEST', 'TextVQA_VAL'], dataset): self.max_num = 23 self.max_num2 = 15 self.min_num = 14 self.min_num2 = 5 elif dataset is not None and listinstr(['InfoVQA_VAL', 'InfoVQA_TEST', 'SEEDBench_IMG'], dataset): self.max_num = 23 self.max_num2 = 5 self.min_num = 15 self.min_num2 = 3 elif dataset is not None and listinstr(['OCRBench', 'POPE'], dataset): self.max_num = 24 self.max_num2 = 8 self.min_num = 9 self.min_num2 = 5 elif dataset is not None and listinstr(['MME', 'HallusionBench'], dataset): self.max_num = 11 self.max_num2 = 6 self.min_num = 4 self.min_num2 = 2 elif dataset is not None and listinstr(['AI2D_TEST'], dataset): self.max_num = 12 self.max_num2 = 6 self.min_num = 5 self.min_num2 = 2 elif dataset is not None and listinstr(['CCBench'], dataset): self.max_num = 24 self.max_num2 = 8 self.min_num = 9 self.min_num2 = 4 else: self.max_num = 8 self.max_num2 = 4 self.min_num = 3 self.min_num2 = 1 def generate_v1_2(self, message, dataset=None): self.INTERLEAVE = False prompt, image_path = self.message_to_promptimg(message, dataset=dataset) image = Image.open(image_path).convert('RGB') image = image.resize((self.image_size, self.image_size)) image_processor = CLIPImageProcessor.from_pretrained(self.model_path) pixel_values = image_processor(images=image, return_tensors='pt').pixel_values pixel_values = pixel_values.to(torch.bfloat16).to(self.device) with torch.no_grad(): response = self.model.chat(self.tokenizer, pixel_values=pixel_values, question=prompt, generation_config=self.kwargs) return response def generate_v1_5(self, message, dataset=None): image_num = len([x for x in message if x['type'] == 'image']) prompt = '\n'.join([x['value'] for x in message if x['type'] == 'text']) if listinstr(['Video'], dataset): prompt = self.build_video_prompt(prompt, dataset) if image_num > 1: image_path = [x['value'] for x in message if x['type'] == 'image'] pixel_values_list = [] for file_name in image_path: pixel_values_list.append(load_image(file_name, max_num=self.max_num).cuda().to(torch.bfloat16)) pixel_values = torch.cat(pixel_values_list, dim=0) elif image_num == 1: image_path = [x['value'] for x in message if x['type'] == 'image'][0] pixel_values = load_image(image_path, max_num=self.max_num).cuda().to(torch.bfloat16) else: pixel_values = None with torch.no_grad(): response = self.model.chat( self.tokenizer, pixel_values=pixel_values, question=prompt, generation_config=self.kwargs, verbose=False) return response def generate_v2(self, message, dataset=None): image_num = len([x for x in message if x['type'] == 'image']) if image_num == 1: prompt = '\n' + '\n'.join([x['value'] for x in message if x['type'] == 'text']) else: prompt, image_idx = '', 1 for x in message: if x['type'] == 'text': prompt += x['value'] elif x['type'] == 'image': prompt += f'' image_idx += 1 prompt = ' '.join([f': ' for i in range(image_num)]) + '\n' + prompt if listinstr(['Video'], dataset): prompt = self.build_video_prompt(prompt, dataset) if image_num > 1: image_path = [x['value'] for x in message if x['type'] == 'image'] num_patches_list = [] pixel_values_list = [] for image_idx, file_name in enumerate(image_path): upscale_flag = image_idx == 0 and dataset is not None and listinstr(['MMMU_DEV_VAL'], dataset) curr_pixel_values = load_image( file_name, max_num=self.max_num, upscale=upscale_flag).cuda().to(torch.bfloat16) curr_pixel_values, target_aspect_ratio = load_image(image_path, min_num=self.min_num, max_num=self.max_num) curr_pixel_values = curr_pixel_values.cuda().to(torch.bfloat16) curr_pixel_values2 = load_image2(image_path, target_aspect_ratio=target_aspect_ratio, min_num=self.min_num2, max_num=self.max_num2) curr_pixel_values2 = curr_pixel_values2.cuda().to(torch.bfloat16) curr_pixel_values = torch.cat((curr_pixel_values[:-1], curr_pixel_values2[:-1], curr_pixel_values[-1:]), 0) num_patches_list.append(curr_pixel_values.size(0)) pixel_values_list.append(curr_pixel_values) pixel_values = torch.cat(pixel_values_list, dim=0) elif image_num == 1: image_path = [x['value'] for x in message if x['type'] == 'image'][0] upscale_flag = listinstr(['MMMU_DEV_VAL'], dataset) pixel_values, target_aspect_ratio = load_image(image_path, min_num=self.min_num, max_num=self.max_num) pixel_values = pixel_values.cuda().to(torch.bfloat16) pixel_values2 = load_image2(image_path, target_aspect_ratio=target_aspect_ratio, min_num=self.min_num2, max_num=self.max_num2) pixel_values2 = pixel_values2.cuda().to(torch.bfloat16) pixel_values = torch.cat((pixel_values[:-1], pixel_values2[:-1], pixel_values[-1:]), 0) num_patches_list = [pixel_values.size(0)] else: pixel_values = None num_patches_list = [] with torch.no_grad(): response = self.model.chat( self.tokenizer, pixel_values=pixel_values, target_aspect_ratio=(1,1), num_patches_list=num_patches_list, question=prompt, generation_config=self.kwargs, verbose=False ) return response def generate_inner(self, message, dataset=None): self.set_max_num(dataset) print(f'InternVL model version: {self.version}') if self.version in ['V1.1', 'V1.2']: return self.generate_v1_2(message, dataset) elif self.version == 'V1.5': return self.generate_v1_5(message, dataset) elif self.version == 'V2.0': return self.generate_v2(message, dataset) else: raise ValueError(f'Unsupported version: {self.version}') def build_history(self, message): # Global Variables image_path = [] image_cnt = 0 def concat_tilist(tilist): nonlocal image_cnt # Declare image_cnt as nonlocal to modify it prompt = '' for item in tilist: # Substitute the pattern in the text if item['type'] == 'text': prompt += re.sub(self.pattern, self.replacement, item['value']) elif item['type'] == 'image': image_cnt += 1 prompt += '\n' image_path.append(item['value']) return prompt # Only previous messages assert len(message) % 2 == 0 history = [] for i in range(len(message) // 2): m1, m2 = message[2 * i], message[2 * i + 1] assert m1['role'] == 'user' and m2['role'] == 'assistant' history.append((concat_tilist(m1['content']), concat_tilist(m2['content']))) return history, image_path, image_cnt def chat_inner_v2(self, message, dataset=None): image_cnt = 0 if len(message) > 1: history, image_path, image_cnt = self.build_history(message[:-1]) else: history, image_path, image_cnt = None, [], 1 current_msg = message[-1] question = '' # If message is just text in the conversation if len(current_msg['content']) == 1 and current_msg['content'][0]['type'] == 'text': question = current_msg['content'][0]['value'] question = re.sub(self.pattern, self.replacement, question) # Fix pattern as per InternVL else: for msg in current_msg['content']: if msg['type'] == 'text': question += re.sub(self.pattern, self.replacement, msg['value']) elif msg['type'] == 'image': image_cnt += 1 question += '\n' image_path.append(msg['value']) if image_cnt > 1: num_patches_list = [] pixel_values_list = [] for image_idx, file_name in enumerate(image_path): upscale_flag = image_idx == 0 and dataset is not None and listinstr(['MMMU_DEV_VAL'], dataset) curr_pixel_values = load_image( file_name, max_num=self.max_num, upscale=upscale_flag).cuda().to(torch.bfloat16) num_patches_list.append(curr_pixel_values.size(0)) pixel_values_list.append(curr_pixel_values) pixel_values = torch.cat(pixel_values_list, dim=0) elif image_cnt == 1: upscale_flag = listinstr(['MMMU_DEV_VAL'], dataset) pixel_values = load_image( image_path, max_num=self.max_num, upscale=upscale_flag).cuda().to(torch.bfloat16) num_patches_list = [pixel_values.size(0)] else: pixel_values = None num_patches_list = [] response, history = self.model.chat( self.tokenizer, pixel_values=pixel_values, target_aspect_ratio=target_aspect_ratio, num_patches_list=num_patches_list, question=question, generation_config=self.kwargs, history=history, return_history=True ) response = re.sub(self.reverse_pattern, self.reverse_replacement, response) return response def chat_inner(self, message, dataset=None): self.set_max_num(dataset) if self.version in ['V1.1', 'V1.2']: raise ValueError(f'Unsupported version for Multi-Turn: {self.version}') elif self.version == 'V1.5': raise ValueError(f'Unsupported version for Multi-Turn: {self.version}') elif self.version == 'V2.0': kwargs_default = dict(do_sample=False, max_new_tokens=512, top_p=None, num_beams=1) self.kwargs = kwargs_default return self.chat_inner_v2(message, dataset) else: raise ValueError(f'Unsupported version for Multi-Turn: {self.version}')