--- library_name: transformers license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer datasets: - layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: test results: - task: name: Token Classification type: token-classification dataset: name: layoutlmv3 type: layoutlmv3 config: InvoiceExtraction split: test args: InvoiceExtraction metrics: - name: Precision type: precision value: 0.8860759493670886 - name: Recall type: recall value: 0.9210526315789473 - name: F1 type: f1 value: 0.9032258064516129 - name: Accuracy type: accuracy value: 0.94375 --- # test This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.3028 - Precision: 0.8861 - Recall: 0.9211 - F1: 0.9032 - Accuracy: 0.9437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 4.3478 | 100 | 0.6867 | 0.6842 | 0.6842 | 0.6842 | 0.8063 | | No log | 8.6957 | 200 | 0.2381 | 0.8625 | 0.9079 | 0.8846 | 0.9313 | | No log | 13.0435 | 300 | 0.2598 | 0.8846 | 0.9079 | 0.8961 | 0.9313 | | No log | 17.3913 | 400 | 0.2165 | 0.8625 | 0.9079 | 0.8846 | 0.9375 | | 0.3281 | 21.7391 | 500 | 0.2037 | 0.8625 | 0.9079 | 0.8846 | 0.9375 | | 0.3281 | 26.0870 | 600 | 0.2571 | 0.8861 | 0.9211 | 0.9032 | 0.9437 | | 0.3281 | 30.4348 | 700 | 0.2735 | 0.8861 | 0.9211 | 0.9032 | 0.9437 | | 0.3281 | 34.7826 | 800 | 0.2993 | 0.8861 | 0.9211 | 0.9032 | 0.9437 | | 0.3281 | 39.1304 | 900 | 0.3044 | 0.8861 | 0.9211 | 0.9032 | 0.9437 | | 0.012 | 43.4783 | 1000 | 0.3028 | 0.8861 | 0.9211 | 0.9032 | 0.9437 | ### Framework versions - Transformers 4.47.0.dev0 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3