--- tags: - pytorch - transformers - masked-lm - persian - modernbert - flash-attention library_name: transformers datasets: - custom license: apache-2.0 language: - fa base_model: - answerdotai/ModernBERT-base pipeline_tag: fill-mask --- # ModernBERT Fine-Tuned on Persian Data Persian ModernBERT is a Persian-language Masked Language Model (MLM) fine-tuned with a custom tokenizer on a massive corpus of **2.5 billion tokens**, exceeding the **1.3 billion tokens** ParsBERT is trained on. This model leverages state-of-the-art attention mechanisms. ## Model Details - **Base Model**: [`answerdotai/ModernBERT-base`](https://huggingface.co/answerdotai/ModernBERT-base) - **Tokenizer**: Custom, optimized for Persian - **Corpus**: 2.5 billion Persian tokens from diverse sources - **Objective**: Masked Language Modeling (MLM) - **Attention Mechanism**: Flash Attention v2 - **Precision**: `torch.bfloat16` for efficient computation on modern hardware ## Usage You can use these models directly with the `transformers` library. Until the next `transformers` release, doing so requires installing transformers from main: ```sh pip install git+https://github.com/huggingface/transformers.git ``` Since ModernBERT is a Masked Language Model (MLM), you can use the `fill-mask` pipeline or load it via `AutoModelForMaskedLM`. To use ModernBERT for downstream tasks like classification, retrieval, or QA, fine-tune it following standard BERT fine-tuning recipes. **⚠️ If your GPU supports it, we recommend using ModernBERT with Flash Attention 2 to reach the highest efficiency. To do so, install Flash Attention as follows, then use the model as normal:** ```bash pip install flash-attn ``` ### Inference on CPU #### Load the Model and Tokenizer ```python import torch from transformers import AutoTokenizer, AutoModelForMaskedLM # Load custom tokenizer and fine-tuned model tokenizer = AutoTokenizer.from_pretrained("myrkur/Persian-ModernBert-base") model = AutoModelForMaskedLM.from_pretrained("myrkur/Persian-ModernBert-base", attn_implementation="eager", torch_dtype=torch.bfloat16, device_map="cpu") ``` #### Example: Masked Token Prediction ```python text = "حال و [MASK] مردم خوب است." inputs = tokenizer(text, return_tensors="pt") inputs = {k:v.cpu() for k, v in inputs.items()} token_logits = model(**inputs).logits # Find the [MASK] token and decode top predictions mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1] mask_token_logits = token_logits[0, mask_token_index, :] top_5_tokens = torch.topk(mask_token_logits, 5, dim=1).indices[0].tolist() for token in top_5_tokens: print(f"Prediction: {text.replace(tokenizer.mask_token, tokenizer.decode([token]))}") ``` ### Inference on GPU #### Load the Model and Tokenizer ```python import torch from transformers import AutoTokenizer, AutoModelForMaskedLM # Load custom tokenizer and fine-tuned model tokenizer = AutoTokenizer.from_pretrained("myrkur/Persian-ModernBert-base") model = AutoModelForMaskedLM.from_pretrained("myrkur/Persian-ModernBert-base", attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16, device_map="cuda") ``` #### Example: Masked Token Prediction ```python text = "حال و [MASK] مردم خوب است." inputs = tokenizer(text, return_tensors="pt") inputs = {k:v.cuda() for k, v in inputs.items()} token_logits = model(**inputs).logits # Find the [MASK] token and decode top predictions mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1] mask_token_logits = token_logits[0, mask_token_index, :] top_5_tokens = torch.topk(mask_token_logits, 5, dim=1).indices[0].tolist() for token in top_5_tokens: print(f"Prediction: {text.replace(tokenizer.mask_token, tokenizer.decode([token]))}") ``` ## Training Details ### Dataset The model was fine-tuned on a custom dataset with **2.5 billion Persian tokens**. The dataset was preprocessed and tokenized using a custom tokenizer designed to maximize efficiency and coverage for Persian. ### Training Configuration - **Optimizer**: AdamW - **Learning Rate**: 6e-4 - **Batch Size**: 32 - **Epochs**: 2 - **Scheduler**: Inverse square root - **Precision**: bfloat16 for faster computation and lower memory usage - **Masking Strategy**: Whole Word Masking (WWM) with a probability of 30% ### Efficient Training with Flash Attention The model uses the `flash_attention_2` implementation, significantly reducing memory overhead while accelerating training on large datasets.