XCOMET-lite
Links: EMNLP 2024 | Arxiv | Github repository
XCOMET-lite
is a distilled version of Unbabel/XCOMET-XXL
— a machine translation evaluation model trained to provide an overall quality score between 0 and 1, where 1 represents a perfect translation.
This model uses microsoft/mdeberta-v3-base
as its backbone and has 278 million parameters, making it approximately 38 times smaller than the 10.7 billion-parameter XCOMET-XXL
.
Quick Start
- Clone the GitHub repository.
- Create a conda environment as instructed in the README.
Then, run the following code:
from xcomet.deberta_encoder import XCOMETLite
model = XCOMETLite().from_pretrained("myyycroft/XCOMET-lite")
data = [
{
"src": "Elon Musk has acquired Twitter and plans significant changes.",
"mt": "Илон Маск приобрел Twitter и планировал значительные искажения.",
"ref": "Илон Маск приобрел Twitter и планирует значительные изменения."
},
{
"src": "Elon Musk has acquired Twitter and plans significant changes.",
"mt": "Илон Маск приобрел Twitter.",
"ref": "Илон Маск приобрел Twitter и планирует значительные изменения."
}
]
model_output = model.predict(data, batch_size=2, gpus=1)
print("Segment-level scores:", model_output.scores)
Model tree for myyycroft/XCOMET-lite
Base model
Unbabel/XCOMET-XXL