---
base_model: llm-jp/llm-jp-3-13b
library_name: peft
---
# Model Card for Model ID
## Model Details
### Model Description
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** 本モデルは、CC-BY-NC-SAライセンス下で利用可能なデータセットを用いて学習されています。そのため、本モデルを利用する際には、元データセットのライセンスに準拠する必要があります。
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
### Direct Use
[More Information Needed]
### Downstream Use [optional]
[More Information Needed]
### Out-of-Scope Use
[More Information Needed]
## Bias, Risks, and Limitations
[More Information Needed]
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
Google Colabで実行してください。
```
!pip install bitsandbytes
```
```
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import json
from tqdm import tqdm
# 必要な設定
model_name = "n4/llm-jp-3-13b-finetune-10"
max_seq_length = 1024
load_in_4bit = True # 4-bit量子化を有効化
# モデルとトークナイザーのロード
print("モデルをロード中...")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float16 if load_in_4bit else None
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
torch_dtype=dtype,
load_in_4bit=load_in_4bit,
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
print("モデルのロードが完了しました。")
```
```
# 推論用ファイルの用意
elyza-tasks-100-TV_0.jsonl を /content/elyza-tasks-100-TV_0.jsonl となるようにアップロードしておいてください。
```
```
# データセットの読み込み
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for i, line in enumerate(f):
line = line.strip()
item += line
if item.endswith("}"):
data = json.loads(item)
# task_id がない場合は行番号を追加
if "task_id" not in data:
data["task_id"] = i # 0から始まる行番号
datasets.append(data)
item = ""
# 推論
results = []
print("推論を開始します...")
for dt in tqdm(datasets):
input_text = dt["input"]
# プロンプト作成
prompt = f"指示を読んで、質問内容を把握してください。把握した内容を回答してください。選択肢の並べ変えや、意味の理解など、多様な質問が想定されるので質問を注意深くみてください。### 指示\n{input_text}\n\n\n### 回答\n"
# トークナイズ(token_type_idsを削除)
inputs = tokenizer(prompt, return_tensors="pt").to(device)
inputs.pop("token_type_ids", None) # 不要なキーを削除
# 推論
outputs = model.generate(
**inputs,
max_new_tokens=512,
use_cache=True,
do_sample=False,
repetition_penalty=1.2,
)
# 結果のデコード
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
# 結果を保存
results.append({"task_id": dt["task_id"], "input": input_text, "output": prediction})
# 推論結果の保存
output_file = f"{model_name.replace('/', '_')}_output.jsonl"
with open(output_file, "w") as f:
for result in results:
f.write(json.dumps(result, ensure_ascii=False) + "\n")
print(f"推論が完了しました。結果は {output_file} に保存されました。")
```
## Training Details
### Training Data
- 本モデルは、CC-BY-NC-SAライセンス下で提供されているデータセットを用いて学習されています。
このライセンスは、非営利的利用及び同一条件での共有を求めるため、利用者はライセンス条件を必ず確認してください。
参照: [CC-BY-NC-SA ライセンス詳細](https://creativecommons.org/licenses/by-nc-sa/4.0/)
### Training Procedure
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed]
#### Speeds, Sizes, Times [optional]
[More Information Needed]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
[More Information Needed]
#### Factors
[More Information Needed]
#### Metrics
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
[More Information Needed]
## Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.13.2