--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-uncased-en-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: test args: conll2003 metrics: - name: Precision type: precision value: 0.9000587199060481 - name: Recall type: recall value: 0.909565630192262 - name: F1 type: f1 value: 0.9047872026444719 - name: Accuracy type: accuracy value: 0.977246046543747 language: - en library_name: transformers --- # bert-base-uncased-en-ner This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.1434 - Precision: 0.9001 - Recall: 0.9096 - F1: 0.9048 - Accuracy: 0.9772 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data The model was trained on data that follows the [`IOB`]() convention. Full tagset with indices: ```python {'O': 0, 'B-PER': 1, 'I-PER': 2, 'B-ORG': 3, 'I-ORG': 4, 'B-LOC': 5, 'I-LOC': 6, 'B-MISC': 7, 'I-MISC': 8} ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0759 | 1.0 | 1756 | 0.1246 | 0.8878 | 0.8973 | 0.8925 | 0.9744 | | 0.0299 | 2.0 | 3512 | 0.1427 | 0.8911 | 0.9040 | 0.8975 | 0.9749 | | 0.0152 | 3.0 | 5268 | 0.1434 | 0.9001 | 0.9096 | 0.9048 | 0.9772 | ### Framework versions - Transformers 4.27.2 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2