--- widget: - text: >- Dih apaan banget dah buang sampah ke sungai begitu. Ada aktivis lingkungan yg sampe dipenjara karena menyuarakan peduli lingkungan. Ini pengangguran satu malah enak bener buang sampah sembarangan. Pantes lu susah, kelakuan lu nyusahin orang lain sih. example_title: Example 1 output: - label: Disgust score: 0.672 - label: Anger score: 0.282 - label: Sadness score: 0.033 - label: Joy score: 0.004 - label: Surprise score: 0.003 - label: Trust score: 0.003 - label: Fear score: 0.002 - label: Anticipation score: 0.001 - text: >- Februari 2009, wartawan Jawa Pos Radar Bali dibunuh dengan keji karena berita korupsi. Januari 2019, Presiden memberikan grasi kepada otak pembunuhan Prabangsa, dari seumur hidup menjadi cuma 20 tahun penjara. Sebuah langkah mundur yang menyakitkan! example_title: Example 2 output: - label: Sadness score: 0.604 - label: Anger score: 0.194 - label: Surprise score: 0.127 - label: Joy score: 0.021 - label: Fear score: 0.018 - label: Disgust score: 0.018 - label: Anticipation score: 0.016 - label: Trust score: 0.003 - text: >- Salut banget sama perjalanan hidup mereka ini kalo diproduksi jadi film pasti bakal rame dan menginspirasi banget woi example_title: Example 3 output: - label: Joy score: 0.9637 - label: Trust score: 0.0219 - label: Anticipation score: 0.0079 - label: Surprise score: 0.0029 - label: Disgust score: 0.0013 - label: Sadness score: 0.0010 - label: Anger score: 0.0007 - label: Fear score: 0.0006 - text: >- SUMPAH HARUS DIBEBASKAN!!! KENAPA GAK TANGKEPIN KORUPTOR AJA DARIPADA NGURUSIN MEME DARI AI GW MARAH BANGET SHIBAL example_title: Example 4 output: - label: Anger score: 0.9889 - label: Disgust score: 0.0035 - label: Sadness score: 0.0026 - label: Fear score: 0.0015 - label: Surprise score: 0.0012 - label: Trust score: 0.0011 - label: Anticipation score: 0.0009 - label: Joy score: 0.0003 - text: >- ga pernah pacaran, sekarang hidup kesepian bgt. pengen minta kenalin cowo ke temen tp mereka jg sama struggle nya. jd nyesel dulu pas sekolah-kuliah kenapa ga pernah 'macem2' example_title: Example 5 output: - label: Sadness score: 0.9526 - label: Anger score: 0.0175 - label: Fear score: 0.0114 - label: Disgust score: 0.0079 - label: Trust score: 0.0038 - label: Anticipation score: 0.0036 - label: Joy score: 0.0019 - label: Surprise score: 0.0013 - text: >- Komisi Penyiaran Indonesia (KPI) meminta agar tayangan televisi menampilkan citra positif Polri secara edukatif dan akurat. Hal ini disampaikan ketua KPI Pusat Ubaidillah dalam sebuah diskusi panel example_title: Example 6 output: - label: Anticipation score: 0.4323 - label: Trust score: 0.3996 - label: Joy score: 0.0500 - label: Anger score: 0.0388 - label: Disgust score: 0.0362 - label: Surprise score: 0.0186 - label: Fear score: 0.0137 - label: Sadness score: 0.0108 library_name: transformers license: mit language: - id --- ## Model Details ### Model Description The EmoSense-ID is a model designed to identify and analyze emotions in Indonesian texts based on Plutchik's eight basic emotions: Anticipation, Anger, Disgust, Fear, Joy, Sadness, Surprise, and Trust. This model is developed using the [NusaBERT-base](https://huggingface.co/LazarusNLP/NusaBERT-base) and trained using Indonesian tweets categorized into eight emotion categories. The evaluation results of this model can be utilized to analyze emotions in social media, providing insights into users' emotional responses. ### Bias Keep in mind that this model is trained using certain data which may cause bias in the emotion classification process. Therefore, it is important to consider and account for such biases when using this model. ### Evaluation Results The model was trained using the Hyperparameter Tuning technique with Optuna. In this process, Optuna conducted five trials to determine the optimal combination of learning rate (1e-6 to 1e-4) and weight decay (1e-6 to 1e-2). Each trial trained the BERT model with different hyperparameter configurations on the training dataset and then evaluated using the validation dataset. After all the experiments are completed, the best hyperparameter combination is used to train the final model.
| Epoch | Training Loss | Validation Loss | Accuracy | F1 | Precision | Recall |
|---|---|---|---|---|---|---|
| 1 | 0.758400 | 0.583508 | 0.829932 | 0.830203 | 0.833136 | 0.829932 |
| 2 | 0.370100 | 0.394630 | 0.866213 | 0.865496 | 0.870364 | 0.866213 |
| 3 | 0.231500 | 0.355294 | 0.884354 | 0.884585 | 0.888140 | 0.884354 |
| 4 | 0.071000 | 0.322376 | 0.902494 | 0.902801 | 0.904842 | 0.902494 |
| 5 | 0.129900 | 0.308596 | 0.900227 | 0.900340 | 0.902132 | 0.900227 |