Update README.md
Browse files
README.md
CHANGED
@@ -10,7 +10,9 @@ language:
|
|
10 |
|
11 |
# TUBELEX FastText Word Embeddings
|
12 |
|
13 |
-
FastText Word Embeddings trained on the TUBELEX YouTube subtitle corpora. We use the 300-dimensional [fastText](https://github.com/facebookresearch/fastText) CBOW model with position weights, 10 negative samples, 10
|
|
|
|
|
14 |
|
15 |
# What is TUBELEX?
|
16 |
|
@@ -18,4 +20,25 @@ TUBELEX is a YouTube subtitle corpus currently available for Chinese, English, I
|
|
18 |
|
19 |
- TODO: paper link
|
20 |
- [KenLM n-gram models](https://huggingface.co/naist-nlp/tubelex-kenlm)
|
21 |
-
- [word frequencies and code](https://github.com/naist-nlp/tubelex)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# TUBELEX FastText Word Embeddings
|
12 |
|
13 |
+
FastText Word Embeddings trained on the TUBELEX YouTube subtitle corpora. We use the 300-dimensional [fastText](https://github.com/facebookresearch/fastText) CBOW model with position weights, 10 negative samples, 10 epochs, character 5-grams (other paramters: default) ([Grave et al., 2018](https://aclanthology.org/L18-1550)).
|
14 |
+
|
15 |
+
We provide both '\*.bin' files (for fastText) and '\*.vec' files that follow the common Word2vec format, and can be used for instance with the `gensim` package.
|
16 |
|
17 |
# What is TUBELEX?
|
18 |
|
|
|
20 |
|
21 |
- TODO: paper link
|
22 |
- [KenLM n-gram models](https://huggingface.co/naist-nlp/tubelex-kenlm)
|
23 |
+
- [word frequencies and code](https://github.com/naist-nlp/tubelex)
|
24 |
+
|
25 |
+
# Usage
|
26 |
+
|
27 |
+
To download and use the fastText models in Python, first install dependencies:
|
28 |
+
|
29 |
+
```
|
30 |
+
pip install huggingface_hub
|
31 |
+
pip install fasttext
|
32 |
+
```
|
33 |
+
|
34 |
+
You can then use e.g. the English (`en`) model in the following way:
|
35 |
+
|
36 |
+
```
|
37 |
+
import fasttext
|
38 |
+
from huggingface_hub import hf_hub_download
|
39 |
+
|
40 |
+
model_file = hf_hub_download(repo_id='naist-nlp/tubelex-kenlm', filename='tubelex-en.bin')
|
41 |
+
model = fasttext.load_model(model_file
|
42 |
+
|
43 |
+
print(model['koala'])
|
44 |
+
```
|