Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +20 -22
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- a2c-PandaReachDense-v2/system_info.txt +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -2.21 +/- 0.62
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77c047334f9292abb56c95e99cca82edae39624fd6745e6815f50cc6ddcd94c5
|
3 |
+
size 107784
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,16 +4,14 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
15 |
-
"log_std_init": -2,
|
16 |
-
"ortho_init": false,
|
17 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
"optimizer_kwargs": {
|
19 |
"alpha": 0.99,
|
@@ -21,24 +19,24 @@
|
|
21 |
"weight_decay": 0
|
22 |
}
|
23 |
},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
-
"learning_rate": 0.
|
31 |
"tensorboard_log": null,
|
32 |
"lr_schedule": {
|
33 |
":type:": "<class 'function'>",
|
34 |
-
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+
|
35 |
},
|
36 |
"_last_obs": {
|
37 |
":type:": "<class 'collections.OrderedDict'>",
|
38 |
-
":serialized:": "
|
39 |
-
"achieved_goal": "[[
|
40 |
-
"desired_goal": "[[-0.
|
41 |
-
"observation": "[[
|
42 |
},
|
43 |
"_last_episode_starts": {
|
44 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -46,27 +44,27 @@
|
|
46 |
},
|
47 |
"_last_original_obs": {
|
48 |
":type:": "<class 'collections.OrderedDict'>",
|
49 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
50 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
51 |
-
"desired_goal": "[[-0.
|
52 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
53 |
},
|
54 |
"_episode_num": 0,
|
55 |
-
"use_sde":
|
56 |
"sde_sample_freq": -1,
|
57 |
-
"_current_progress_remaining":
|
58 |
"_stats_window_size": 100,
|
59 |
"ep_info_buffer": {
|
60 |
":type:": "<class 'collections.deque'>",
|
61 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
62 |
},
|
63 |
"ep_success_buffer": {
|
64 |
":type:": "<class 'collections.deque'>",
|
65 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
66 |
},
|
67 |
-
"_n_updates":
|
68 |
-
"n_steps":
|
69 |
-
"gamma": 0.
|
70 |
"gae_lambda": 1.0,
|
71 |
"ent_coef": 0.0,
|
72 |
"vf_coef": 0.5,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f22992c5900>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f22992bed00>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1688921355594357313,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAB3y5PtF4Mj0Z/gU/B3y5PtF4Mj0Z/gU/B3y5PtF4Mj0Z/gU/B3y5PtF4Mj0Z/gU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAcVgv1/x179Bl1e9sZnevrnnv79HIYc/Yoe5P2F7qz9yzRW7Ut+4PwtCKT9DfHO/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAHfLk+0XgyPRn+BT/dYGY8+UAdO8n4tDsHfLk+0XgyPRn+BT/dYGY8+UAdO8n4tDsHfLk+0XgyPRn+BT/dYGY8+UAdO8n4tDsHfLk+0XgyPRn+BT/dYGY8+UAdO8n4tDuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.36227438 0.04357225 0.5234085 ]\n [0.36227438 0.04357225 0.5234085 ]\n [0.36227438 0.04357225 0.5234085 ]\n [0.36227438 0.04357225 0.5234085 ]]",
|
38 |
+
"desired_goal": "[[-0.87800604 -1.6870536 -0.05263448]\n [-0.43476632 -1.4992591 1.055703 ]\n [ 1.449444 1.3397027 -0.00228581]\n [ 1.4443152 0.661164 -0.95111483]]",
|
39 |
+
"observation": "[[0.36227438 0.04357225 0.5234085 0.01406118 0.0023995 0.00552282]\n [0.36227438 0.04357225 0.5234085 0.01406118 0.0023995 0.00552282]\n [0.36227438 0.04357225 0.5234085 0.01406118 0.0023995 0.00552282]\n [0.36227438 0.04357225 0.5234085 0.01406118 0.0023995 0.00552282]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQPEYvtJ7qD0gS0w8r/F6PfJcC777soI+XByFvVulFj6KsFk+UaYFveOdPz1j20M+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.1493578 0.08226742 0.01246908]\n [ 0.06126564 -0.13609675 0.25527176]\n [-0.0649955 0.14711516 0.2125875 ]\n [-0.03262931 0.04678143 0.19126658]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEYqtoGkJ9b+UhpRSlIwBbJRLMowBdJRHQKofErMkhRt1fZQoaAZoCWgPQwhExM2pZMAEwJSGlFKUaBVLMmgWR0CqHspoCdSVdX2UKGgGaAloD0MIxv1HpkNn8b+UhpRSlGgVSzJoFkdAqh6WH8CPqHV9lChoBmgJaA9DCKhSswdaAfS/lIaUUpRoFUsyaBZHQKoeUIHkcS51fZQoaAZoCWgPQwjrOH6oNOLxv5SGlFKUaBVLMmgWR0CqID5lFtsOdX2UKGgGaAloD0MIg6YlVkaj7L+UhpRSlGgVSzJoFkdAqh/2JaaCtnV9lChoBmgJaA9DCC5W1GAaxva/lIaUUpRoFUsyaBZHQKofwcriEQJ1fZQoaAZoCWgPQwi0ccRafMoAwJSGlFKUaBVLMmgWR0CqH3w4jrzHdX2UKGgGaAloD0MIAruaPGW17L+UhpRSlGgVSzJoFkdAqiFmLR8c/HV9lChoBmgJaA9DCNW0i2mmGwDAlIaUUpRoFUsyaBZHQKohHeb/ffp1fZQoaAZoCWgPQwilZaTeU7nyv5SGlFKUaBVLMmgWR0CqIOm+TNdJdX2UKGgGaAloD0MIVFc+y/Og9b+UhpRSlGgVSzJoFkdAqiCkSyt3fXV9lChoBmgJaA9DCGoxeJj2Tfy/lIaUUpRoFUsyaBZHQKoilib2Dg91fZQoaAZoCWgPQwi14bA08CPsv5SGlFKUaBVLMmgWR0CqIk3qzJIUdX2UKGgGaAloD0MImGpmLQWk8b+UhpRSlGgVSzJoFkdAqiIZhWo3rHV9lChoBmgJaA9DCG2q7pHN1e2/lIaUUpRoFUsyaBZHQKoh0/r0J4V1fZQoaAZoCWgPQwghsd09QDf1v5SGlFKUaBVLMmgWR0CqI7bLMcIadX2UKGgGaAloD0MIdGGkF7U78b+UhpRSlGgVSzJoFkdAqiNu0mdAgXV9lChoBmgJaA9DCJ/kDpvITPK/lIaUUpRoFUsyaBZHQKojOoUi6hB1fZQoaAZoCWgPQwjadW9FYoL7v5SGlFKUaBVLMmgWR0CqIvTL4etCdX2UKGgGaAloD0MIJv29FB6097+UhpRSlGgVSzJoFkdAqiTjOHFglXV9lChoBmgJaA9DCJzhBnx+GAXAlIaUUpRoFUsyaBZHQKokmwLVnVZ1fZQoaAZoCWgPQwigbqDAOxkFwJSGlFKUaBVLMmgWR0CqJGatLcsUdX2UKGgGaAloD0MICf1MvW5R/7+UhpRSlGgVSzJoFkdAqiQg6hg3LnV9lChoBmgJaA9DCME7+fTY1vO/lIaUUpRoFUsyaBZHQKomEL/jsD51fZQoaAZoCWgPQwglH7sLlFTwv5SGlFKUaBVLMmgWR0CqJchu4wyqdX2UKGgGaAloD0MIJefEHtrH7b+UhpRSlGgVSzJoFkdAqiWUJQcghnV9lChoBmgJaA9DCPG5E+y/Tum/lIaUUpRoFUsyaBZHQKolToHLRrt1fZQoaAZoCWgPQwhDjUKSWT3wv5SGlFKUaBVLMmgWR0CqJ0WSMcZMdX2UKGgGaAloD0MIhZSfVPv08r+UhpRSlGgVSzJoFkdAqib9W2gFo3V9lChoBmgJaA9DCA8om3KFN/q/lIaUUpRoFUsyaBZHQKomyPn0TUR1fZQoaAZoCWgPQwizP1Bu2/f5v5SGlFKUaBVLMmgWR0CqJoOpS75EdX2UKGgGaAloD0MIqOMxA5Ux/r+UhpRSlGgVSzJoFkdAqihmu7pV0nV9lChoBmgJaA9DCJkoQup21gHAlIaUUpRoFUsyaBZHQKooHiWE9Md1fZQoaAZoCWgPQwjb+BOVDevwv5SGlFKUaBVLMmgWR0CqJ+mz8gp0dX2UKGgGaAloD0MIT+s2qP0WCsCUhpRSlGgVSzJoFkdAqiejxy4nW3V9lChoBmgJaA9DCIjxmld11gLAlIaUUpRoFUsyaBZHQKopfpV0cOt1fZQoaAZoCWgPQwjptdlYibnwv5SGlFKUaBVLMmgWR0CqKTY8dPtVdX2UKGgGaAloD0MI2sU0072OCMCUhpRSlGgVSzJoFkdAqikBh4MWoHV9lChoBmgJaA9DCHdJnBVREwXAlIaUUpRoFUsyaBZHQKoou/1xsEd1fZQoaAZoCWgPQwjryfyjb5L9v5SGlFKUaBVLMmgWR0CqKvnKGL1mdX2UKGgGaAloD0MIipC6nX1l8L+UhpRSlGgVSzJoFkdAqiqyoIfKZHV9lChoBmgJaA9DCD7PnzaqEwjAlIaUUpRoFUsyaBZHQKoqfu+AVfx1fZQoaAZoCWgPQwiN0M/U65YIwJSGlFKUaBVLMmgWR0CqKjo1k1/EdX2UKGgGaAloD0MIl3SUg9kkAcCUhpRSlGgVSzJoFkdAqi0aNVBD5XV9lChoBmgJaA9DCG3/ykqT0grAlIaUUpRoFUsyaBZHQKos0r5IpYt1fZQoaAZoCWgPQwic+kDyzqH1v5SGlFKUaBVLMmgWR0CqLJ9S/CZXdX2UKGgGaAloD0MIE4HqH0Ty8L+UhpRSlGgVSzJoFkdAqixbzbvgFXV9lChoBmgJaA9DCI4fKo2Y2fC/lIaUUpRoFUsyaBZHQKovFUZNwit1fZQoaAZoCWgPQwgcBvNXyFz3v5SGlFKUaBVLMmgWR0CqLs42sJY1dX2UKGgGaAloD0MIRzzZzYz+8r+UhpRSlGgVSzJoFkdAqi6a6MBIWnV9lChoBmgJaA9DCHeBkgILoPS/lIaUUpRoFUsyaBZHQKouVm9xp+N1fZQoaAZoCWgPQwgtI/Weyqnzv5SGlFKUaBVLMmgWR0CqMP/H5rP/dX2UKGgGaAloD0MIPX/aqE6nBcCUhpRSlGgVSzJoFkdAqjC4agmJFnV9lChoBmgJaA9DCIih1ckZyvy/lIaUUpRoFUsyaBZHQKowhTpgTh51fZQoaAZoCWgPQwhbQj7o2WwIwJSGlFKUaBVLMmgWR0CqMEAHu7YkdX2UKGgGaAloD0MIyJQPQdVo8b+UhpRSlGgVSzJoFkdAqjLr63y7PXV9lChoBmgJaA9DCB5Pyw9cpfa/lIaUUpRoFUsyaBZHQKoypQ3xWkt1fZQoaAZoCWgPQwgUQZyHE7gBwJSGlFKUaBVLMmgWR0CqMnGDcuandX2UKGgGaAloD0MILEme6/sQBcCUhpRSlGgVSzJoFkdAqjItYr8R+XV9lChoBmgJaA9DCFH1K50Pj/e/lIaUUpRoFUsyaBZHQKo0+MH8jzJ1fZQoaAZoCWgPQwhTWn9LAP72v5SGlFKUaBVLMmgWR0CqNLHCwbEQdX2UKGgGaAloD0MIgAwdO6iE9r+UhpRSlGgVSzJoFkdAqjR+aBqbjXV9lChoBmgJaA9DCK99Ab1w5/6/lIaUUpRoFUsyaBZHQKo0OeeWfK91fZQoaAZoCWgPQwjDD86njlUHwJSGlFKUaBVLMmgWR0CqNt1UEPlNdX2UKGgGaAloD0MIUDi7tUwG9L+UhpRSlGgVSzJoFkdAqjaVIEr5I3V9lChoBmgJaA9DCETbMXVXdvO/lIaUUpRoFUsyaBZHQKo2YLbYbsF1fZQoaAZoCWgPQwgplfCEXn/ov5SGlFKUaBVLMmgWR0CqNhsySFGodX2UKGgGaAloD0MIZJY9CWyO+7+UhpRSlGgVSzJoFkdAqjf5VMmF8HV9lChoBmgJaA9DCK+WOzPBEATAlIaUUpRoFUsyaBZHQKo3sLaVUuN1fZQoaAZoCWgPQwjNdK+T+vL9v5SGlFKUaBVLMmgWR0CqN3ymQ8wIdX2UKGgGaAloD0MIsTOFzmuMBcCUhpRSlGgVSzJoFkdAqjc2/Firk3V9lChoBmgJaA9DCH6s4LchZgfAlIaUUpRoFUsyaBZHQKo5Fc2zfJp1fZQoaAZoCWgPQwh7wDxkygfxv5SGlFKUaBVLMmgWR0CqOM2I42jxdX2UKGgGaAloD0MIaY8X0uHh/7+UhpRSlGgVSzJoFkdAqjiY3DNyHXV9lChoBmgJaA9DCLA5B8+EhgbAlIaUUpRoFUsyaBZHQKo4UvugHu91fZQoaAZoCWgPQwhsQlpj0KkFwJSGlFKUaBVLMmgWR0CqOj56t1ZDdX2UKGgGaAloD0MIBkg0gSI2AMCUhpRSlGgVSzJoFkdAqjn2LUCq63V9lChoBmgJaA9DCHCUvDrH4ADAlIaUUpRoFUsyaBZHQKo5wciGFi91fZQoaAZoCWgPQwjDu1zEdyL4v5SGlFKUaBVLMmgWR0CqOXxFZxJedX2UKGgGaAloD0MIVG6iluYW87+UhpRSlGgVSzJoFkdAqjt36l+Ey3V9lChoBmgJaA9DCP3a+uk/q/a/lIaUUpRoFUsyaBZHQKo7L7SApa11fZQoaAZoCWgPQwijyjDuBtH8v5SGlFKUaBVLMmgWR0CqOvvi1iOOdX2UKGgGaAloD0MIuCBblq/L7r+UhpRSlGgVSzJoFkdAqjq3JDE3sHV9lChoBmgJaA9DCDj3V4/71gLAlIaUUpRoFUsyaBZHQKo8l5i3G4t1fZQoaAZoCWgPQwh9IHnnUKYGwJSGlFKUaBVLMmgWR0CqPE8DbJwLdX2UKGgGaAloD0MIgQabOo8K4b+UhpRSlGgVSzJoFkdAqjwarmyPdXV9lChoBmgJaA9DCHdoWIy6lvq/lIaUUpRoFUsyaBZHQKo71SKm8/V1fZQoaAZoCWgPQwh7gy9Mpgrvv5SGlFKUaBVLMmgWR0CqPbgu7HyVdX2UKGgGaAloD0MIb0vkgjN4BcCUhpRSlGgVSzJoFkdAqj1v8CPp6nV9lChoBmgJaA9DCC7+tidIbPq/lIaUUpRoFUsyaBZHQKo9O508vEl1fZQoaAZoCWgPQwjyQGSRJt79v5SGlFKUaBVLMmgWR0CqPPXDm8ujdX2UKGgGaAloD0MIx9Rd2QUD+7+UhpRSlGgVSzJoFkdAqj7WfqX4TXV9lChoBmgJaA9DCJ9x4UBItgbAlIaUUpRoFUsyaBZHQKo+jlnyup11fZQoaAZoCWgPQwj1nPS+8dUIwJSGlFKUaBVLMmgWR0CqPlnCoCMhdX2UKGgGaAloD0MIHxMpzeYx+b+UhpRSlGgVSzJoFkdAqj4UP4EfT3V9lChoBmgJaA9DCOGYZU8COwHAlIaUUpRoFUsyaBZHQKo/9cSoOx11fZQoaAZoCWgPQwhZp8r3jAQEwJSGlFKUaBVLMmgWR0CqP60iY9gXdX2UKGgGaAloD0MIIT8buW7K+b+UhpRSlGgVSzJoFkdAqj94vpQk5nV9lChoBmgJaA9DCN3temmKwPi/lIaUUpRoFUsyaBZHQKo/MyrPt2N1ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
69 |
"ent_coef": 0.0,
|
70 |
"vf_coef": 0.5,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2aa238dd452f1cfcd5b9be1114442f6cd24528c4bbe94620154ef6cd92c4d0f0
|
3 |
+
size 44606
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d012c351fb02207d09dd244b52bd03c8c255602e243b111374e1caba7b010ece
|
3 |
+
size 45886
|
a2c-PandaReachDense-v2/system_info.txt
CHANGED
@@ -2,6 +2,6 @@
|
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
- PyTorch: 2.0.1+cu118
|
5 |
-
- GPU Enabled:
|
6 |
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
|
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: False
|
6 |
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f308fad9630>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f308fad6f80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 80000, "_total_timesteps": 20000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688853940938964008, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqPlnP55S3L5cy5W9qPlnP55S3L5cy5W9qPlnP55S3L5cy5W9qPlnP55S3L5cy5W9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAArWcfvxFLgr96F9Q/aFE3P8X48Lxp6MM/pgS3v4SOwL/rOtA/ppW8P7bAzr/HVFg/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACo+Wc/nlLcvlzLlb1eRz0/1I+BvokOGb6o+Wc/nlLcvlzLlb1eRz0/1I+BvokOGb6o+Wc/nlLcvlzLlb1eRz0/1I+BvokOGb6o+Wc/nlLcvlzLlb1eRz0/1I+BvokOGb6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.9061532 -0.43031782 -0.07314178]\n [ 0.9061532 -0.43031782 -0.07314178]\n [ 0.9061532 -0.43031782 -0.07314178]\n [ 0.9061532 -0.43031782 -0.07314178]]", "desired_goal": "[[-0.6226757 -1.0179158 1.6569664]\n [ 0.7160859 -0.0294155 1.5305301]\n [-1.4298294 -1.5043492 1.626798 ]\n [ 1.4733169 -1.6152561 0.8450436]]", "observation": "[[ 0.9061532 -0.43031782 -0.07314178 0.7393702 -0.25305045 -0.14946951]\n [ 0.9061532 -0.43031782 -0.07314178 0.7393702 -0.25305045 -0.14946951]\n [ 0.9061532 -0.43031782 -0.07314178 0.7393702 -0.25305045 -0.14946951]\n [ 0.9061532 -0.43031782 -0.07314178 0.7393702 -0.25305045 -0.14946951]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAASa8Kvo1Piz3QuxQ+sMEFvoKIQbzSLH86bj56PIMwtT3cmY8+JcmZvYvSxzzVaDo9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.13543428 0.06802282 0.1452477 ]\n [-0.13062167 -0.01181233 0.00097342]\n [ 0.01527367 0.08847144 0.28047073]\n [-0.07509068 0.02439239 0.04551013]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": -3.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0PBmDd4TMMCUhpRSlIwBbJRLMowBdJRHQGx7A08/2TR1fZQoaAZoCWgPQwgX1LfM6ZIkwJSGlFKUaBVLMmgWR0BsdyUC7sfJdX2UKGgGaAloD0MIHZPF/UdGKsCUhpRSlGgVSzJoFkdAbHNechC+lHV9lChoBmgJaA9DCFAaahSS3CrAlIaUUpRoFUsyaBZHQGxvE1Muez51fZQoaAZoCWgPQwi6MT1hiUM3wJSGlFKUaBVLMmgWR0BsiaKDTSb6dX2UKGgGaAloD0MIi/7QzJOLL8CUhpRSlGgVSzJoFkdAbIXDneSB9XV9lChoBmgJaA9DCNLlzeFa5TnAlIaUUpRoFUsyaBZHQGyB/7zkIX11fZQoaAZoCWgPQwhqTl5kAqY/wJSGlFKUaBVLMmgWR0BsfbWK/EfldX2UKGgGaAloD0MIBwjm6PF3NcCUhpRSlGgVSzJoFkdAbJjR/mT1TXV9lChoBmgJaA9DCIqSkEjbuCbAlIaUUpRoFUsyaBZHQGyU8kMTewd1fZQoaAZoCWgPQwgH6/8c5ks0wJSGlFKUaBVLMmgWR0BskS0hNdqtdX2UKGgGaAloD0MIXfksz4OFQcCUhpRSlGgVSzJoFkdAbIzjo6jnFHV9lChoBmgJaA9DCE/OUNzxCjLAlIaUUpRoFUsyaBZHQGyoq1w5vLp1fZQoaAZoCWgPQwhPr5RliKs1wJSGlFKUaBVLMmgWR0BspNiz9jwydX2UKGgGaAloD0MITfT5KCPeJMCUhpRSlGgVSzJoFkdAbKETcIqsl3V9lChoBmgJaA9DCNBCAkaXnzjAlIaUUpRoFUsyaBZHQGycyhBZ6ld1fZQoaAZoCWgPQwhUcHhBRF47wJSGlFKUaBVLMmgWR0BsuQVXV9WqdX2UKGgGaAloD0MIIenTKvoPMMCUhpRSlGgVSzJoFkdAbLUwxnFo+XV9lChoBmgJaA9DCEbsE0AxKizAlIaUUpRoFUsyaBZHQGyxdHtnf2t1fZQoaAZoCWgPQwg5DVGFP9sywJSGlFKUaBVLMmgWR0BsrUXzlLezdX2UKGgGaAloD0MIFeY9zjSxOMCUhpRSlGgVSzJoFkdAbMjwOOKfnXV9lChoBmgJaA9DCL1WQndJIDfAlIaUUpRoFUsyaBZHQGzFEqUeMhp1fZQoaAZoCWgPQwiq1y0CY8EzwJSGlFKUaBVLMmgWR0BswU1uR9w4dX2UKGgGaAloD0MIPj4hO29bL8CUhpRSlGgVSzJoFkdAbL0AbQ1JlXV9lChoBmgJaA9DCJRsdTklIDrAlIaUUpRoFUsyaBZHQGzXRiw0O3F1fZQoaAZoCWgPQwj7k/jcCV4+wJSGlFKUaBVLMmgWR0Bs02bd8Aq/dX2UKGgGaAloD0MITvIjfsWyO8CUhpRSlGgVSzJoFkdAbM+eMhouf3V9lChoBmgJaA9DCA0bZf1m0jrAlIaUUpRoFUsyaBZHQGzLVCHARCh1fZQoaAZoCWgPQwiWe4FZoVgZwJSGlFKUaBVLMmgWR0Bs5UrkKeCkdX2UKGgGaAloD0MIwHXFjPC+OsCUhpRSlGgVSzJoFkdAbOFsLv1DjXV9lChoBmgJaA9DCPc96q9XKDfAlIaUUpRoFUsyaBZHQGzdoU8FINF1fZQoaAZoCWgPQwjBAMKHEqE5wJSGlFKUaBVLMmgWR0Bs2VbqyGBXdX2UKGgGaAloD0MItykeF9ViKcCUhpRSlGgVSzJoFkdAbPS6oVEeAHV9lChoBmgJaA9DCMAklSnmECjAlIaUUpRoFUsyaBZHQGzw3E61b7l1fZQoaAZoCWgPQwjd0JSdfhwzwJSGlFKUaBVLMmgWR0Bs7RYA80UHdX2UKGgGaAloD0MIjLlrCfkcO8CUhpRSlGgVSzJoFkdAbOjLt/nW8XV9lChoBmgJaA9DCEGeXb71oUDAlIaUUpRoFUsyaBZHQG0ElaKUFB91fZQoaAZoCWgPQwjNPLmmQBI8wJSGlFKUaBVLMmgWR0BtALdJrcj8dX2UKGgGaAloD0MIJQUWwJSxJ8CUhpRSlGgVSzJoFkdAbPzxQSBbwHV9lChoBmgJaA9DCHxFt17TTzPAlIaUUpRoFUsyaBZHQGz4p4KQaJh1fZQoaAZoCWgPQwi6gQLv5JMtwJSGlFKUaBVLMmgWR0BtFlA9mpVCdX2UKGgGaAloD0MIb72mBwVtIcCUhpRSlGgVSzJoFkdAbRJzfaYeDHV9lChoBmgJaA9DCEyKj0/ITirAlIaUUpRoFUsyaBZHQG0OttqHoHN1fZQoaAZoCWgPQwjVer/RjjM1wJSGlFKUaBVLMmgWR0BtCm1MM7U5dX2UKGgGaAloD0MIR1hUxOmoOcCUhpRSlGgVSzJoFkdAbSXbILgGbHV9lChoBmgJaA9DCPktOllqtT7AlIaUUpRoFUsyaBZHQG0h/UWl/H51fZQoaAZoCWgPQwh5IojzcJo4wJSGlFKUaBVLMmgWR0BtHjkKeCkHdX2UKGgGaAloD0MIXru04bAIN8CUhpRSlGgVSzJoFkdAbRnu2qkuYnV9lChoBmgJaA9DCOz5muWy7TTAlIaUUpRoFUsyaBZHQG017nxJ/Xp1fZQoaAZoCWgPQwiaeAd40jY2wJSGlFKUaBVLMmgWR0BtMg6ltTDPdX2UKGgGaAloD0MIOh4zUBkzM8CUhpRSlGgVSzJoFkdAbS5IvrWy1XV9lChoBmgJaA9DCEuPpnoyN0LAlIaUUpRoFUsyaBZHQG0p/v4M4Ll1fZQoaAZoCWgPQwiI9xxYjjAtwJSGlFKUaBVLMmgWR0BtRgphF3INdX2UKGgGaAloD0MIb2OzI9UvIMCUhpRSlGgVSzJoFkdAbUIr/bTMJXV9lChoBmgJaA9DCLtjsU0qZjPAlIaUUpRoFUsyaBZHQG0+YO2AoXt1fZQoaAZoCWgPQwjGxObj2nA9wJSGlFKUaBVLMmgWR0BtOhdld1MedX2UKGgGaAloD0MI7KUpApyCPcCUhpRSlGgVSzJoFkdAbVT24/eLvXV9lChoBmgJaA9DCCo6kst/+DjAlIaUUpRoFUsyaBZHQG1RFxffGdZ1fZQoaAZoCWgPQwgA5e/eUaMxwJSGlFKUaBVLMmgWR0BtTVCVrylOdX2UKGgGaAloD0MI1pC4x9LzNcCUhpRSlGgVSzJoFkdAbUkG9pRGdHV9lChoBmgJaA9DCB7gSQuXxTnAlIaUUpRoFUsyaBZHQG1jTkIX0oV1fZQoaAZoCWgPQwgHX5hMFfg2wJSGlFKUaBVLMmgWR0BtX3AVO9FndX2UKGgGaAloD0MI4c6FkV68L8CUhpRSlGgVSzJoFkdAbVupQUHpr3V9lChoBmgJaA9DCB/0bFZ9jEDAlIaUUpRoFUsyaBZHQG1XX2ugYgt1fZQoaAZoCWgPQwhQVDasqbg2wJSGlFKUaBVLMmgWR0BtcjQgLZzxdX2UKGgGaAloD0MIv4BeuHP5PMCUhpRSlGgVSzJoFkdAbW5XL/0dzXV9lChoBmgJaA9DCPg2/dmPSDPAlIaUUpRoFUsyaBZHQG1qkZiuuA91fZQoaAZoCWgPQwjPTDCcayw8wJSGlFKUaBVLMmgWR0BtZkn7YTTOdX2UKGgGaAloD0MIoP1IERnuN8CUhpRSlGgVSzJoFkdAbYE7aqS5iHV9lChoBmgJaA9DCOWAXU2ekEHAlIaUUpRoFUsyaBZHQG19XsPatcR1fZQoaAZoCWgPQwg9YYkHlMEzwJSGlFKUaBVLMmgWR0BteZusLfDUdX2UKGgGaAloD0MI9+rjoe+WM8CUhpRSlGgVSzJoFkdAbXVR/EwWWXV9lChoBmgJaA9DCNSbUfNVujPAlIaUUpRoFUsyaBZHQG2bsjeKsMl1fZQoaAZoCWgPQwiyKy0j9a4ywJSGlFKUaBVLMmgWR0Btl96qsEJTdX2UKGgGaAloD0MIgLqBAu/MLMCUhpRSlGgVSzJoFkdAbZQmFajesXV9lChoBmgJaA9DCMECmDJwACvAlIaUUpRoFUsyaBZHQG2P/1QIldF1fZQoaAZoCWgPQwg7/DVZo3YswJSGlFKUaBVLMmgWR0BttiwW3z+WdX2UKGgGaAloD0MI9GxWfa6WLcCUhpRSlGgVSzJoFkdAbbJZvkzXSXV9lChoBmgJaA9DCEnb+BOVpSXAlIaUUpRoFUsyaBZHQG2uoBJZnth1fZQoaAZoCWgPQwjt153uPLtBwJSGlFKUaBVLMmgWR0BtqmKAJ9iMdX2UKGgGaAloD0MIW+m12Vi5MMCUhpRSlGgVSzJoFkdAbdEt3fQ8fXV9lChoBmgJaA9DCA6EZAET8C3AlIaUUpRoFUsyaBZHQG3NYnOSntR1fZQoaAZoCWgPQwgIdZFCWcwzwJSGlFKUaBVLMmgWR0Btya9oN/e+dX2UKGgGaAloD0MIn+OjxRk3PMCUhpRSlGgVSzJoFkdAbcV2ECeVcHV9lChoBmgJaA9DCMO3sG68qyXAlIaUUpRoFUsyaBZHQG3xfg75mAd1fZQoaAZoCWgPQwgS9YJPc4IwwJSGlFKUaBVLMmgWR0Bt7a4QSSNgdX2UKGgGaAloD0MI2EenrnyuLcCUhpRSlGgVSzJoFkdAbeoP2f02+HV9lChoBmgJaA9DCI7nM6DenCzAlIaUUpRoFUsyaBZHQG3l7u2JBPd1fZQoaAZoCWgPQwgZy/RLxKMwwJSGlFKUaBVLMmgWR0BuErk6tDD1dX2UKGgGaAloD0MIsHYU56izGMCUhpRSlGgVSzJoFkdAbg7tF8XvY3V9lChoBmgJaA9DCMDo8uZw0TDAlIaUUpRoFUsyaBZHQG4LNliBoVV1fZQoaAZoCWgPQwiIodXJGUY0wJSGlFKUaBVLMmgWR0BuBxS3solVdX2UKGgGaAloD0MI8rVnlgQwMMCUhpRSlGgVSzJoFkdAbi9z+3pfQnV9lChoBmgJaA9DCJlGk4sx6CLAlIaUUpRoFUsyaBZHQG4rpe3QUpN1fZQoaAZoCWgPQwh3LLZJRXsxwJSGlFKUaBVLMmgWR0BuJ+v+wTufdX2UKGgGaAloD0MIjE0rhUDMQMCUhpRSlGgVSzJoFkdAbiOzhP0qY3V9lChoBmgJaA9DCCr/Wl65QjrAlIaUUpRoFUsyaBZHQG5E7HyVfNR1fZQoaAZoCWgPQwhVTRB1H4wzwJSGlFKUaBVLMmgWR0BuQQ7HQyAQdX2UKGgGaAloD0MI3e7lPjmaLMCUhpRSlGgVSzJoFkdAbj1S3LFGX3V9lChoBmgJaA9DCPPMy2H3VTfAlIaUUpRoFUsyaBZHQG45CLuQZGd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1, "n_steps": 20000, "gamma": 0.95, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f22992c5900>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f22992bed00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688921355594357313, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAB3y5PtF4Mj0Z/gU/B3y5PtF4Mj0Z/gU/B3y5PtF4Mj0Z/gU/B3y5PtF4Mj0Z/gU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAcVgv1/x179Bl1e9sZnevrnnv79HIYc/Yoe5P2F7qz9yzRW7Ut+4PwtCKT9DfHO/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAHfLk+0XgyPRn+BT/dYGY8+UAdO8n4tDsHfLk+0XgyPRn+BT/dYGY8+UAdO8n4tDsHfLk+0XgyPRn+BT/dYGY8+UAdO8n4tDsHfLk+0XgyPRn+BT/dYGY8+UAdO8n4tDuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.36227438 0.04357225 0.5234085 ]\n [0.36227438 0.04357225 0.5234085 ]\n [0.36227438 0.04357225 0.5234085 ]\n [0.36227438 0.04357225 0.5234085 ]]", "desired_goal": "[[-0.87800604 -1.6870536 -0.05263448]\n [-0.43476632 -1.4992591 1.055703 ]\n [ 1.449444 1.3397027 -0.00228581]\n [ 1.4443152 0.661164 -0.95111483]]", "observation": "[[0.36227438 0.04357225 0.5234085 0.01406118 0.0023995 0.00552282]\n [0.36227438 0.04357225 0.5234085 0.01406118 0.0023995 0.00552282]\n [0.36227438 0.04357225 0.5234085 0.01406118 0.0023995 0.00552282]\n [0.36227438 0.04357225 0.5234085 0.01406118 0.0023995 0.00552282]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQPEYvtJ7qD0gS0w8r/F6PfJcC777soI+XByFvVulFj6KsFk+UaYFveOdPz1j20M+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.1493578 0.08226742 0.01246908]\n [ 0.06126564 -0.13609675 0.25527176]\n [-0.0649955 0.14711516 0.2125875 ]\n [-0.03262931 0.04678143 0.19126658]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEYqtoGkJ9b+UhpRSlIwBbJRLMowBdJRHQKofErMkhRt1fZQoaAZoCWgPQwhExM2pZMAEwJSGlFKUaBVLMmgWR0CqHspoCdSVdX2UKGgGaAloD0MIxv1HpkNn8b+UhpRSlGgVSzJoFkdAqh6WH8CPqHV9lChoBmgJaA9DCKhSswdaAfS/lIaUUpRoFUsyaBZHQKoeUIHkcS51fZQoaAZoCWgPQwjrOH6oNOLxv5SGlFKUaBVLMmgWR0CqID5lFtsOdX2UKGgGaAloD0MIg6YlVkaj7L+UhpRSlGgVSzJoFkdAqh/2JaaCtnV9lChoBmgJaA9DCC5W1GAaxva/lIaUUpRoFUsyaBZHQKofwcriEQJ1fZQoaAZoCWgPQwi0ccRafMoAwJSGlFKUaBVLMmgWR0CqH3w4jrzHdX2UKGgGaAloD0MIAruaPGW17L+UhpRSlGgVSzJoFkdAqiFmLR8c/HV9lChoBmgJaA9DCNW0i2mmGwDAlIaUUpRoFUsyaBZHQKohHeb/ffp1fZQoaAZoCWgPQwilZaTeU7nyv5SGlFKUaBVLMmgWR0CqIOm+TNdJdX2UKGgGaAloD0MIVFc+y/Og9b+UhpRSlGgVSzJoFkdAqiCkSyt3fXV9lChoBmgJaA9DCGoxeJj2Tfy/lIaUUpRoFUsyaBZHQKoilib2Dg91fZQoaAZoCWgPQwi14bA08CPsv5SGlFKUaBVLMmgWR0CqIk3qzJIUdX2UKGgGaAloD0MImGpmLQWk8b+UhpRSlGgVSzJoFkdAqiIZhWo3rHV9lChoBmgJaA9DCG2q7pHN1e2/lIaUUpRoFUsyaBZHQKoh0/r0J4V1fZQoaAZoCWgPQwghsd09QDf1v5SGlFKUaBVLMmgWR0CqI7bLMcIadX2UKGgGaAloD0MIdGGkF7U78b+UhpRSlGgVSzJoFkdAqiNu0mdAgXV9lChoBmgJaA9DCJ/kDpvITPK/lIaUUpRoFUsyaBZHQKojOoUi6hB1fZQoaAZoCWgPQwjadW9FYoL7v5SGlFKUaBVLMmgWR0CqIvTL4etCdX2UKGgGaAloD0MIJv29FB6097+UhpRSlGgVSzJoFkdAqiTjOHFglXV9lChoBmgJaA9DCJzhBnx+GAXAlIaUUpRoFUsyaBZHQKokmwLVnVZ1fZQoaAZoCWgPQwigbqDAOxkFwJSGlFKUaBVLMmgWR0CqJGatLcsUdX2UKGgGaAloD0MICf1MvW5R/7+UhpRSlGgVSzJoFkdAqiQg6hg3LnV9lChoBmgJaA9DCME7+fTY1vO/lIaUUpRoFUsyaBZHQKomEL/jsD51fZQoaAZoCWgPQwglH7sLlFTwv5SGlFKUaBVLMmgWR0CqJchu4wyqdX2UKGgGaAloD0MIJefEHtrH7b+UhpRSlGgVSzJoFkdAqiWUJQcghnV9lChoBmgJaA9DCPG5E+y/Tum/lIaUUpRoFUsyaBZHQKolToHLRrt1fZQoaAZoCWgPQwhDjUKSWT3wv5SGlFKUaBVLMmgWR0CqJ0WSMcZMdX2UKGgGaAloD0MIhZSfVPv08r+UhpRSlGgVSzJoFkdAqib9W2gFo3V9lChoBmgJaA9DCA8om3KFN/q/lIaUUpRoFUsyaBZHQKomyPn0TUR1fZQoaAZoCWgPQwizP1Bu2/f5v5SGlFKUaBVLMmgWR0CqJoOpS75EdX2UKGgGaAloD0MIqOMxA5Ux/r+UhpRSlGgVSzJoFkdAqihmu7pV0nV9lChoBmgJaA9DCJkoQup21gHAlIaUUpRoFUsyaBZHQKooHiWE9Md1fZQoaAZoCWgPQwjb+BOVDevwv5SGlFKUaBVLMmgWR0CqJ+mz8gp0dX2UKGgGaAloD0MIT+s2qP0WCsCUhpRSlGgVSzJoFkdAqiejxy4nW3V9lChoBmgJaA9DCIjxmld11gLAlIaUUpRoFUsyaBZHQKopfpV0cOt1fZQoaAZoCWgPQwjptdlYibnwv5SGlFKUaBVLMmgWR0CqKTY8dPtVdX2UKGgGaAloD0MI2sU0072OCMCUhpRSlGgVSzJoFkdAqikBh4MWoHV9lChoBmgJaA9DCHdJnBVREwXAlIaUUpRoFUsyaBZHQKoou/1xsEd1fZQoaAZoCWgPQwjryfyjb5L9v5SGlFKUaBVLMmgWR0CqKvnKGL1mdX2UKGgGaAloD0MIipC6nX1l8L+UhpRSlGgVSzJoFkdAqiqyoIfKZHV9lChoBmgJaA9DCD7PnzaqEwjAlIaUUpRoFUsyaBZHQKoqfu+AVfx1fZQoaAZoCWgPQwiN0M/U65YIwJSGlFKUaBVLMmgWR0CqKjo1k1/EdX2UKGgGaAloD0MIl3SUg9kkAcCUhpRSlGgVSzJoFkdAqi0aNVBD5XV9lChoBmgJaA9DCG3/ykqT0grAlIaUUpRoFUsyaBZHQKos0r5IpYt1fZQoaAZoCWgPQwic+kDyzqH1v5SGlFKUaBVLMmgWR0CqLJ9S/CZXdX2UKGgGaAloD0MIE4HqH0Ty8L+UhpRSlGgVSzJoFkdAqixbzbvgFXV9lChoBmgJaA9DCI4fKo2Y2fC/lIaUUpRoFUsyaBZHQKovFUZNwit1fZQoaAZoCWgPQwgcBvNXyFz3v5SGlFKUaBVLMmgWR0CqLs42sJY1dX2UKGgGaAloD0MIRzzZzYz+8r+UhpRSlGgVSzJoFkdAqi6a6MBIWnV9lChoBmgJaA9DCHeBkgILoPS/lIaUUpRoFUsyaBZHQKouVm9xp+N1fZQoaAZoCWgPQwgtI/Weyqnzv5SGlFKUaBVLMmgWR0CqMP/H5rP/dX2UKGgGaAloD0MIPX/aqE6nBcCUhpRSlGgVSzJoFkdAqjC4agmJFnV9lChoBmgJaA9DCIih1ckZyvy/lIaUUpRoFUsyaBZHQKowhTpgTh51fZQoaAZoCWgPQwhbQj7o2WwIwJSGlFKUaBVLMmgWR0CqMEAHu7YkdX2UKGgGaAloD0MIyJQPQdVo8b+UhpRSlGgVSzJoFkdAqjLr63y7PXV9lChoBmgJaA9DCB5Pyw9cpfa/lIaUUpRoFUsyaBZHQKoypQ3xWkt1fZQoaAZoCWgPQwgUQZyHE7gBwJSGlFKUaBVLMmgWR0CqMnGDcuandX2UKGgGaAloD0MILEme6/sQBcCUhpRSlGgVSzJoFkdAqjItYr8R+XV9lChoBmgJaA9DCFH1K50Pj/e/lIaUUpRoFUsyaBZHQKo0+MH8jzJ1fZQoaAZoCWgPQwhTWn9LAP72v5SGlFKUaBVLMmgWR0CqNLHCwbEQdX2UKGgGaAloD0MIgAwdO6iE9r+UhpRSlGgVSzJoFkdAqjR+aBqbjXV9lChoBmgJaA9DCK99Ab1w5/6/lIaUUpRoFUsyaBZHQKo0OeeWfK91fZQoaAZoCWgPQwjDD86njlUHwJSGlFKUaBVLMmgWR0CqNt1UEPlNdX2UKGgGaAloD0MIUDi7tUwG9L+UhpRSlGgVSzJoFkdAqjaVIEr5I3V9lChoBmgJaA9DCETbMXVXdvO/lIaUUpRoFUsyaBZHQKo2YLbYbsF1fZQoaAZoCWgPQwgplfCEXn/ov5SGlFKUaBVLMmgWR0CqNhsySFGodX2UKGgGaAloD0MIZJY9CWyO+7+UhpRSlGgVSzJoFkdAqjf5VMmF8HV9lChoBmgJaA9DCK+WOzPBEATAlIaUUpRoFUsyaBZHQKo3sLaVUuN1fZQoaAZoCWgPQwjNdK+T+vL9v5SGlFKUaBVLMmgWR0CqN3ymQ8wIdX2UKGgGaAloD0MIsTOFzmuMBcCUhpRSlGgVSzJoFkdAqjc2/Firk3V9lChoBmgJaA9DCH6s4LchZgfAlIaUUpRoFUsyaBZHQKo5Fc2zfJp1fZQoaAZoCWgPQwh7wDxkygfxv5SGlFKUaBVLMmgWR0CqOM2I42jxdX2UKGgGaAloD0MIaY8X0uHh/7+UhpRSlGgVSzJoFkdAqjiY3DNyHXV9lChoBmgJaA9DCLA5B8+EhgbAlIaUUpRoFUsyaBZHQKo4UvugHu91fZQoaAZoCWgPQwhsQlpj0KkFwJSGlFKUaBVLMmgWR0CqOj56t1ZDdX2UKGgGaAloD0MIBkg0gSI2AMCUhpRSlGgVSzJoFkdAqjn2LUCq63V9lChoBmgJaA9DCHCUvDrH4ADAlIaUUpRoFUsyaBZHQKo5wciGFi91fZQoaAZoCWgPQwjDu1zEdyL4v5SGlFKUaBVLMmgWR0CqOXxFZxJedX2UKGgGaAloD0MIVG6iluYW87+UhpRSlGgVSzJoFkdAqjt36l+Ey3V9lChoBmgJaA9DCP3a+uk/q/a/lIaUUpRoFUsyaBZHQKo7L7SApa11fZQoaAZoCWgPQwijyjDuBtH8v5SGlFKUaBVLMmgWR0CqOvvi1iOOdX2UKGgGaAloD0MIuCBblq/L7r+UhpRSlGgVSzJoFkdAqjq3JDE3sHV9lChoBmgJaA9DCDj3V4/71gLAlIaUUpRoFUsyaBZHQKo8l5i3G4t1fZQoaAZoCWgPQwh9IHnnUKYGwJSGlFKUaBVLMmgWR0CqPE8DbJwLdX2UKGgGaAloD0MIgQabOo8K4b+UhpRSlGgVSzJoFkdAqjwarmyPdXV9lChoBmgJaA9DCHdoWIy6lvq/lIaUUpRoFUsyaBZHQKo71SKm8/V1fZQoaAZoCWgPQwh7gy9Mpgrvv5SGlFKUaBVLMmgWR0CqPbgu7HyVdX2UKGgGaAloD0MIb0vkgjN4BcCUhpRSlGgVSzJoFkdAqj1v8CPp6nV9lChoBmgJaA9DCC7+tidIbPq/lIaUUpRoFUsyaBZHQKo9O508vEl1fZQoaAZoCWgPQwjyQGSRJt79v5SGlFKUaBVLMmgWR0CqPPXDm8ujdX2UKGgGaAloD0MIx9Rd2QUD+7+UhpRSlGgVSzJoFkdAqj7WfqX4TXV9lChoBmgJaA9DCJ9x4UBItgbAlIaUUpRoFUsyaBZHQKo+jlnyup11fZQoaAZoCWgPQwj1nPS+8dUIwJSGlFKUaBVLMmgWR0CqPlnCoCMhdX2UKGgGaAloD0MIHxMpzeYx+b+UhpRSlGgVSzJoFkdAqj4UP4EfT3V9lChoBmgJaA9DCOGYZU8COwHAlIaUUpRoFUsyaBZHQKo/9cSoOx11fZQoaAZoCWgPQwhZp8r3jAQEwJSGlFKUaBVLMmgWR0CqP60iY9gXdX2UKGgGaAloD0MIIT8buW7K+b+UhpRSlGgVSzJoFkdAqj94vpQk5nV9lChoBmgJaA9DCN3temmKwPi/lIaUUpRoFUsyaBZHQKo/MyrPt2N1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -2.209569371677935, "std_reward": 0.6206106244482436, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-09T18:08:18.499316"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2387
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d10f3a3966b60d37e86e22b67cb98f84e09c20306c548c2176b7a359d770d68
|
3 |
size 2387
|