File size: 2,091 Bytes
8958adb 916fd05 8958adb 916fd05 8958adb 916fd05 8958adb 916fd05 8958adb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: vipubmed-deberta-xsmall-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vipubmed-deberta-xsmall-finetuned-squad
This model is a fine-tuned version of [manhtt-079/vipubmed-deberta-xsmall](https://huggingface.co/manhtt-079/vipubmed-deberta-xsmall) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.6448
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.1442 | 1.0 | 1622 | 1.9280 |
| 1.5136 | 2.0 | 3244 | 1.5406 |
| 1.1747 | 3.0 | 4866 | 1.5945 |
| 0.9242 | 4.0 | 6488 | 1.6185 |
| 0.7439 | 5.0 | 8110 | 1.7099 |
| 0.5699 | 6.0 | 9732 | 1.8345 |
| 0.4549 | 7.0 | 11354 | 2.0935 |
| 0.3667 | 8.0 | 12976 | 2.2295 |
| 0.2881 | 9.0 | 14598 | 2.4917 |
| 0.2398 | 10.0 | 16220 | 2.7296 |
| 0.1911 | 11.0 | 17842 | 2.9421 |
| 0.1539 | 12.0 | 19464 | 3.1193 |
| 0.1273 | 13.0 | 21086 | 3.3655 |
| 0.1147 | 14.0 | 22708 | 3.4853 |
| 0.0957 | 15.0 | 24330 | 3.6448 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|