File size: 1,831 Bytes
8958adb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c76ab7b
8958adb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c76ab7b
 
 
8958adb
 
 
 
f4e9198
8958adb
 
 
c76ab7b
 
 
 
 
 
 
 
 
 
 
 
8958adb
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: vipubmed-deberta-xsmall-finetuned-squad
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vipubmed-deberta-xsmall-finetuned-squad

This model is a fine-tuned version of [manhtt-079/vipubmed-deberta-xsmall](https://huggingface.co/manhtt-079/vipubmed-deberta-xsmall) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4768

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.6181        | 1.0   | 1196  | 1.9617          |
| 1.6439        | 2.0   | 2392  | 1.5840          |
| 1.2607        | 3.0   | 3588  | 1.6354          |
| 1.0223        | 4.0   | 4784  | 1.6411          |
| 0.7925        | 5.0   | 5980  | 1.7369          |
| 0.6184        | 6.0   | 7176  | 1.8626          |
| 0.5019        | 7.0   | 8372  | 2.1214          |
| 0.4125        | 8.0   | 9568  | 2.2120          |
| 0.321         | 9.0   | 10764 | 2.3238          |
| 0.2899        | 10.0  | 11960 | 2.4768          |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3