namorisco commited on
Commit
a7e0b96
·
1 Parent(s): a914947

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 255.96 +/- 24.49
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3ce100be50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3ce100bee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3ce100bf70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3ce100f040>", "_build": "<function ActorCriticPolicy._build at 0x7f3ce100f0d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3ce100f160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3ce100f1f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3ce100f280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3ce100f310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3ce100f3a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3ce100f430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3ce1005de0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673368401749409308, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAICRGL3DaTu6NBiQub9CirRsmpg6x5+qOAAAgD8AAIA/AIS6Pa47mbpagQ05PPVjM68RA7tiHiK4AACAPwAAgD/m6Bg9NrBqvKacDLxbS/Q7af/FPW0F0rwAAIA/AACAP7OmMz32SGO6sGpMO0POmbYtTPi6SP5vugAAgD8AAIA/WnXCPfWARz7GOEA9z9hOvknI6jwm9fc7AAAAAAAAAACNcNY9EIOIP/bJQj7eWL++b3kEPorimTwAAAAAAAAAAI3S+j1Z73M+pQQivgcKOb6lqs69IueXPAAAAAAAAAAAZpw9PEh/j7popoq5UQaBtC4zqDqS5qA4AACAPwAAgD8AwbW8FJi3uvjqSzuMkJE4tscROU3o7rkAAIA/AACAPwBgxjwpEG268VudOgFYADb060w7HTi2uQAAgD8AAIA/xqcrPvQLHz8W2Sa7+lmPvqXJ1D267vI6AAAAAAAAAACz9Ng9l2jJPvJ9173mvZa+ml3XPANZ8rwAAAAAAAAAAGYNfT2Fy8q5HTWZO/erujWz3P66Ik+zugAAgD8AAIA/mgmHPPYgPbrCCCK56l+mtBfQhTufPjw4AACAPwAAgD9NtgO9FMyGuvHRkrue6JG27rquOs8GqzoAAIA/AACAP2Yf/737Iow/DHmXvsOqqr7W6wy+Fu/9vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbXGNz+RMZECUhpRSlIwBbJRN6AOMAXSUR0CU0xrpJPIodX2UKGgGaAloD0MIRIgrZ++fYUCUhpRSlGgVTegDaBZHQJTXvWuoxYd1fZQoaAZoCWgPQwhYdOs1vYxhQJSGlFKUaBVN6ANoFkdAlNhm6shgV3V9lChoBmgJaA9DCFq77UJz619AlIaUUpRoFU3oA2gWR0CU20Dxb0OFdX2UKGgGaAloD0MILbDHRErbZECUhpRSlGgVTegDaBZHQJTcp8eCCjF1fZQoaAZoCWgPQwhG0QMfgxVjQJSGlFKUaBVN6ANoFkdAlN6FgYxcmnV9lChoBmgJaA9DCInS3uCLy2RAlIaUUpRoFU3oA2gWR0CU4EulXRw7dX2UKGgGaAloD0MIGm8rvbavZUCUhpRSlGgVTegDaBZHQJT/ofQrtmd1fZQoaAZoCWgPQwh8REyJJIo5QJSGlFKUaBVL8GgWR0CVABpKzzErdX2UKGgGaAloD0MIdZFCWfi+W0CUhpRSlGgVTegDaBZHQJUCbmfXf651fZQoaAZoCWgPQwjfawiOy75lQJSGlFKUaBVN6ANoFkdAlQJ+fywwCnV9lChoBmgJaA9DCMx5xr5kIGhAlIaUUpRoFU3oA2gWR0CVA+X2ugYhdX2UKGgGaAloD0MIlgoqqn5cX0CUhpRSlGgVTegDaBZHQJUNm6GxlhB1fZQoaAZoCWgPQwiJXkax3J5iQJSGlFKUaBVN6ANoFkdAlRBgblzU7XV9lChoBmgJaA9DCAPQKF361wLAlIaUUpRoFUv9aBZHQJURgQtjCpF1fZQoaAZoCWgPQwhVih2NQy5lQJSGlFKUaBVN6ANoFkdAlRrrpNbkfnV9lChoBmgJaA9DCDscXaU7+mNAlIaUUpRoFU3oA2gWR0CVHYf642CNdX2UKGgGaAloD0MIZfz7jIv0ZECUhpRSlGgVTegDaBZHQJUgx2ki2Ul1fZQoaAZoCWgPQwh002achuQ1wJSGlFKUaBVL+GgWR0CVIQptrKvFdX2UKGgGaAloD0MIJPCHn/8AYkCUhpRSlGgVTegDaBZHQJUjxdrwe/51fZQoaAZoCWgPQwgwLeqT3CdjQJSGlFKUaBVN6ANoFkdAlSjpid8Rc3V9lChoBmgJaA9DCOvE5XiFVGdAlIaUUpRoFU3oA2gWR0CVKaBAv+OwdX2UKGgGaAloD0MIcmvSbYk8ZECUhpRSlGgVTegDaBZHQJUsycH4XXR1fZQoaAZoCWgPQwjizRq8rytjQJSGlFKUaBVN6ANoFkdAlS49cW0qpnV9lChoBmgJaA9DCKkWEcVk5GVAlIaUUpRoFU3oA2gWR0CVMfcRUWEcdX2UKGgGaAloD0MI5+RFJuB/WECUhpRSlGgVTegDaBZHQJVSbulXRw91fZQoaAZoCWgPQwjPhCaJJW5jQJSGlFKUaBVN6ANoFkdAlVL8TviLl3V9lChoBmgJaA9DCEzBGmdTVGBAlIaUUpRoFU3oA2gWR0CVVV7zkIX1dX2UKGgGaAloD0MIW0I+6NmhXUCUhpRSlGgVTegDaBZHQJVW0YHgP3B1fZQoaAZoCWgPQwgH0VrR5oBhQJSGlFKUaBVN6ANoFkdAlWAvEKmbb3V9lChoBmgJaA9DCAyuuaP/WV1AlIaUUpRoFU3oA2gWR0CVZDXPqs2fdX2UKGgGaAloD0MIUhA8vj3OY0CUhpRSlGgVTegDaBZHQJVtFsCT2WZ1fZQoaAZoCWgPQwhHsHH9Oy1kQJSGlFKUaBVN6ANoFkdAlW+K5PM0QHV9lChoBmgJaA9DCKsGYW73HWFAlIaUUpRoFU3oA2gWR0CVcowFkhA4dX2UKGgGaAloD0MIumWH+Id5Y0CUhpRSlGgVTegDaBZHQJVywvIwM6R1fZQoaAZoCWgPQwjQRxlxgcpkQJSGlFKUaBVN6ANoFkdAlXT2f5DZ13V9lChoBmgJaA9DCM7DCUznV3JAlIaUUpRoFU06A2gWR0CVeBy3kPtldX2UKGgGaAloD0MI4uXpXFG4Y0CUhpRSlGgVTegDaBZHQJV5H7CSA6N1fZQoaAZoCWgPQwggJuFCnj5gQJSGlFKUaBVN6ANoFkdAlXmukDZDiXV9lChoBmgJaA9DCHJr0m0JOmRAlIaUUpRoFU3oA2gWR0CVe+a1kUbldX2UKGgGaAloD0MIborHRbXoPUCUhpRSlGgVS/doFkdAlXyJxR2r4nV9lChoBmgJaA9DCBhftMeLGWFAlIaUUpRoFU3oA2gWR0CVfQM/QjUvdX2UKGgGaAloD0MIXi13ZoJNY0CUhpRSlGgVTegDaBZHQJWeo/bCaZx1fZQoaAZoCWgPQwhQbXAiepFjQJSGlFKUaBVN6ANoFkdAlZ8VvVEux3V9lChoBmgJaA9DCH/aqE4HfWFAlIaUUpRoFU3oA2gWR0CVoX9jgAIZdX2UKGgGaAloD0MIMpBnl+94ZECUhpRSlGgVTegDaBZHQJWjKom5UcZ1fZQoaAZoCWgPQwi+2HvxxcBkQJSGlFKUaBVN6ANoFkdAlazqWPcSG3V9lChoBmgJaA9DCBFzSdV2V2dAlIaUUpRoFU3oA2gWR0CVsNeg+QlsdX2UKGgGaAloD0MIb6DAO3l2Y0CUhpRSlGgVTegDaBZHQJW53vSc9W91fZQoaAZoCWgPQwjAkqtY/DhjQJSGlFKUaBVN6ANoFkdAlb9YvvjOs3V9lChoBmgJaA9DCArXo3C9a2ZAlIaUUpRoFU3oA2gWR0CVv5gBtDUmdX2UKGgGaAloD0MIKzBkdatPZUCUhpRSlGgVTegDaBZHQJXB/XUYsNF1fZQoaAZoCWgPQwj1ZtR8lc9kQJSGlFKUaBVN6ANoFkdAlcUvnGKhtnV9lChoBmgJaA9DCFiMutbeOmFAlIaUUpRoFU3oA2gWR0CVxk1h9b5edX2UKGgGaAloD0MImrD9ZAxMYUCUhpRSlGgVTegDaBZHQJXGzzCk43p1fZQoaAZoCWgPQwgK2uTwScRyQJSGlFKUaBVNZAJoFkdAlcfUgGKQ73V9lChoBmgJaA9DCHLBGfz9NmBAlIaUUpRoFU3oA2gWR0CVyO+lCTlldX2UKGgGaAloD0MIryZPWc2tYkCUhpRSlGgVTegDaBZHQJXJepXIU8F1fZQoaAZoCWgPQwg1YmafRyhlQJSGlFKUaBVN6ANoFkdAlcn7HMlkY3V9lChoBmgJaA9DCCm0rPvHxENAlIaUUpRoFU0AAWgWR0CVy7Y6GQCCdX2UKGgGaAloD0MIMBLacq5WaUCUhpRSlGgVTegDaBZHQJXpGnR9gF51fZQoaAZoCWgPQwj35GGh1qFgQJSGlFKUaBVN6ANoFkdAlemGKuSwGHV9lChoBmgJaA9DCIvdPqvMVWJAlIaUUpRoFU3oA2gWR0CV66z67/XHdX2UKGgGaAloD0MI1XYTfFPGY0CUhpRSlGgVTegDaBZHQJX2+ICU5dZ1fZQoaAZoCWgPQwiit3h4T5NlQJSGlFKUaBVN6ANoFkdAlfse7QLNOnV9lChoBmgJaA9DCGoy420l2mdAlIaUUpRoFU3oA2gWR0CWBIPTG5tndX2UKGgGaAloD0MITvBN02cHxr+UhpRSlGgVS+toFkdAlgZquGKyfXV9lChoBmgJaA9DCOmZXmKs7mNAlIaUUpRoFU3oA2gWR0CWCgUYKpkxdX2UKGgGaAloD0MI521sdiTLZUCUhpRSlGgVTegDaBZHQJYMuHFglWx1fZQoaAZoCWgPQwjx1Y7inPNjQJSGlFKUaBVN6ANoFkdAlhA4/Vy3kXV9lChoBmgJaA9DCBKlvcEXlWlAlIaUUpRoFU3oA2gWR0CWEWSgGr0bdX2UKGgGaAloD0MI5ngFoieNZUCUhpRSlGgVTegDaBZHQJYR/s/pt791fZQoaAZoCWgPQwhpb/CFya9dQJSGlFKUaBVN6ANoFkdAlhM2cnVoYnV9lChoBmgJaA9DCOrr+ZrlEjhAlIaUUpRoFUviaBZHQJYTwtcv/R51fZQoaAZoCWgPQwhgyyvX2wZlQJSGlFKUaBVN6ANoFkdAlhSLxqfvnnV9lChoBmgJaA9DCA3jbhCtlWNAlIaUUpRoFU3oA2gWR0CWFSh2nsLOdX2UKGgGaAloD0MIsirCTUbNZkCUhpRSlGgVTegDaBZHQJYVowPAfuF1fZQoaAZoCWgPQwhsByP2CVlmQJSGlFKUaBVN6ANoFkdAlhfXKGL1mXV9lChoBmgJaA9DCDbK+s3Ex1BAlIaUUpRoFUvSaBZHQJYcovGp++d1fZQoaAZoCWgPQwhzZOWXwRwwQJSGlFKUaBVL32gWR0CWHrBVuJk5dX2UKGgGaAloD0MILVvri4QGYUCUhpRSlGgVTegDaBZHQJYiZrTH80l1fZQoaAZoCWgPQwjC+6pcKA5iQJSGlFKUaBVN6ANoFkdAliLJvHcUNHV9lChoBmgJaA9DCKZ/SSpTNWZAlIaUUpRoFU3oA2gWR0CWN9bfP5YYdX2UKGgGaAloD0MIRnwnZj0RZkCUhpRSlGgVTegDaBZHQJZHojZ+QU51fZQoaAZoCWgPQwj3ksZoHfVdQJSGlFKUaBVN6ANoFkdAllGR7NSqEXV9lChoBmgJaA9DCDIdOj3vy2VAlIaUUpRoFU3oA2gWR0CWV0ybx3FDdX2UKGgGaAloD0MIi1QYWwj8YECUhpRSlGgVTegDaBZHQJZaTokiUxF1fZQoaAZoCWgPQwixMERO37ViQJSGlFKUaBVN6ANoFkdAll382NvOyHV9lChoBmgJaA9DCELpCyHnNWVAlIaUUpRoFU3oA2gWR0CWXzPepGWldX2UKGgGaAloD0MIISOgwhFwY0CUhpRSlGgVTegDaBZHQJZf3OTq0MR1fZQoaAZoCWgPQwi8yW/RyUdgQJSGlFKUaBVN6ANoFkdAlmHCGrS3LHV9lChoBmgJaA9DCGqjOh1IxGRAlIaUUpRoFU3oA2gWR0CWY0Idlum8dX2UKGgGaAloD0MIvK5fsBspZUCUhpRSlGgVTegDaBZHQJZjzRBu4w11fZQoaAZoCWgPQwgnF2NgHYdiQJSGlFKUaBVN6ANoFkdAlmYk7OmixnV9lChoBmgJaA9DCIkkehnFAEJAlIaUUpRoFUvcaBZHQJZqVGXokiV1fZQoaAZoCWgPQwh0CvKzkdc1QJSGlFKUaBVL+GgWR0CWarHxBmf5dX2UKGgGaAloD0MImIkipG4SY0CUhpRSlGgVTegDaBZHQJZriXokiUx1fZQoaAZoCWgPQwixNPCjGlRjQJSGlFKUaBVN6ANoFkdAlm2Sh37k4nV9lChoBmgJaA9DCFNBRdUvCmdAlIaUUpRoFU3oA2gWR0CWcRQZn+Q2dX2UKGgGaAloD0MIUHKHTeTDZUCUhpRSlGgVTegDaBZHQJZxbcYZVGV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 256, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
namorisco_lander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:944eeec6dafa24590aadf3c22f759c357588cf11b7c28305758ba0a99d00185a
3
+ size 147206
namorisco_lander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
namorisco_lander/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3ce100be50>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3ce100bee0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3ce100bf70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3ce100f040>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f3ce100f0d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3ce100f160>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3ce100f1f0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3ce100f280>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3ce100f310>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3ce100f3a0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3ce100f430>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f3ce1005de0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673368401749409308,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAICRGL3DaTu6NBiQub9CirRsmpg6x5+qOAAAgD8AAIA/AIS6Pa47mbpagQ05PPVjM68RA7tiHiK4AACAPwAAgD/m6Bg9NrBqvKacDLxbS/Q7af/FPW0F0rwAAIA/AACAP7OmMz32SGO6sGpMO0POmbYtTPi6SP5vugAAgD8AAIA/WnXCPfWARz7GOEA9z9hOvknI6jwm9fc7AAAAAAAAAACNcNY9EIOIP/bJQj7eWL++b3kEPorimTwAAAAAAAAAAI3S+j1Z73M+pQQivgcKOb6lqs69IueXPAAAAAAAAAAAZpw9PEh/j7popoq5UQaBtC4zqDqS5qA4AACAPwAAgD8AwbW8FJi3uvjqSzuMkJE4tscROU3o7rkAAIA/AACAPwBgxjwpEG268VudOgFYADb060w7HTi2uQAAgD8AAIA/xqcrPvQLHz8W2Sa7+lmPvqXJ1D267vI6AAAAAAAAAACz9Ng9l2jJPvJ9173mvZa+ml3XPANZ8rwAAAAAAAAAAGYNfT2Fy8q5HTWZO/erujWz3P66Ik+zugAAgD8AAIA/mgmHPPYgPbrCCCK56l+mtBfQhTufPjw4AACAPwAAgD9NtgO9FMyGuvHRkrue6JG27rquOs8GqzoAAIA/AACAP2Yf/737Iow/DHmXvsOqqr7W6wy+Fu/9vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbXGNz+RMZECUhpRSlIwBbJRN6AOMAXSUR0CU0xrpJPIodX2UKGgGaAloD0MIRIgrZ++fYUCUhpRSlGgVTegDaBZHQJTXvWuoxYd1fZQoaAZoCWgPQwhYdOs1vYxhQJSGlFKUaBVN6ANoFkdAlNhm6shgV3V9lChoBmgJaA9DCFq77UJz619AlIaUUpRoFU3oA2gWR0CU20Dxb0OFdX2UKGgGaAloD0MILbDHRErbZECUhpRSlGgVTegDaBZHQJTcp8eCCjF1fZQoaAZoCWgPQwhG0QMfgxVjQJSGlFKUaBVN6ANoFkdAlN6FgYxcmnV9lChoBmgJaA9DCInS3uCLy2RAlIaUUpRoFU3oA2gWR0CU4EulXRw7dX2UKGgGaAloD0MIGm8rvbavZUCUhpRSlGgVTegDaBZHQJT/ofQrtmd1fZQoaAZoCWgPQwh8REyJJIo5QJSGlFKUaBVL8GgWR0CVABpKzzErdX2UKGgGaAloD0MIdZFCWfi+W0CUhpRSlGgVTegDaBZHQJUCbmfXf651fZQoaAZoCWgPQwjfawiOy75lQJSGlFKUaBVN6ANoFkdAlQJ+fywwCnV9lChoBmgJaA9DCMx5xr5kIGhAlIaUUpRoFU3oA2gWR0CVA+X2ugYhdX2UKGgGaAloD0MIlgoqqn5cX0CUhpRSlGgVTegDaBZHQJUNm6GxlhB1fZQoaAZoCWgPQwiJXkax3J5iQJSGlFKUaBVN6ANoFkdAlRBgblzU7XV9lChoBmgJaA9DCAPQKF361wLAlIaUUpRoFUv9aBZHQJURgQtjCpF1fZQoaAZoCWgPQwhVih2NQy5lQJSGlFKUaBVN6ANoFkdAlRrrpNbkfnV9lChoBmgJaA9DCDscXaU7+mNAlIaUUpRoFU3oA2gWR0CVHYf642CNdX2UKGgGaAloD0MIZfz7jIv0ZECUhpRSlGgVTegDaBZHQJUgx2ki2Ul1fZQoaAZoCWgPQwh002achuQ1wJSGlFKUaBVL+GgWR0CVIQptrKvFdX2UKGgGaAloD0MIJPCHn/8AYkCUhpRSlGgVTegDaBZHQJUjxdrwe/51fZQoaAZoCWgPQwgwLeqT3CdjQJSGlFKUaBVN6ANoFkdAlSjpid8Rc3V9lChoBmgJaA9DCOvE5XiFVGdAlIaUUpRoFU3oA2gWR0CVKaBAv+OwdX2UKGgGaAloD0MIcmvSbYk8ZECUhpRSlGgVTegDaBZHQJUsycH4XXR1fZQoaAZoCWgPQwjizRq8rytjQJSGlFKUaBVN6ANoFkdAlS49cW0qpnV9lChoBmgJaA9DCKkWEcVk5GVAlIaUUpRoFU3oA2gWR0CVMfcRUWEcdX2UKGgGaAloD0MI5+RFJuB/WECUhpRSlGgVTegDaBZHQJVSbulXRw91fZQoaAZoCWgPQwjPhCaJJW5jQJSGlFKUaBVN6ANoFkdAlVL8TviLl3V9lChoBmgJaA9DCEzBGmdTVGBAlIaUUpRoFU3oA2gWR0CVVV7zkIX1dX2UKGgGaAloD0MIW0I+6NmhXUCUhpRSlGgVTegDaBZHQJVW0YHgP3B1fZQoaAZoCWgPQwgH0VrR5oBhQJSGlFKUaBVN6ANoFkdAlWAvEKmbb3V9lChoBmgJaA9DCAyuuaP/WV1AlIaUUpRoFU3oA2gWR0CVZDXPqs2fdX2UKGgGaAloD0MIUhA8vj3OY0CUhpRSlGgVTegDaBZHQJVtFsCT2WZ1fZQoaAZoCWgPQwhHsHH9Oy1kQJSGlFKUaBVN6ANoFkdAlW+K5PM0QHV9lChoBmgJaA9DCKsGYW73HWFAlIaUUpRoFU3oA2gWR0CVcowFkhA4dX2UKGgGaAloD0MIumWH+Id5Y0CUhpRSlGgVTegDaBZHQJVywvIwM6R1fZQoaAZoCWgPQwjQRxlxgcpkQJSGlFKUaBVN6ANoFkdAlXT2f5DZ13V9lChoBmgJaA9DCM7DCUznV3JAlIaUUpRoFU06A2gWR0CVeBy3kPtldX2UKGgGaAloD0MI4uXpXFG4Y0CUhpRSlGgVTegDaBZHQJV5H7CSA6N1fZQoaAZoCWgPQwggJuFCnj5gQJSGlFKUaBVN6ANoFkdAlXmukDZDiXV9lChoBmgJaA9DCHJr0m0JOmRAlIaUUpRoFU3oA2gWR0CVe+a1kUbldX2UKGgGaAloD0MIborHRbXoPUCUhpRSlGgVS/doFkdAlXyJxR2r4nV9lChoBmgJaA9DCBhftMeLGWFAlIaUUpRoFU3oA2gWR0CVfQM/QjUvdX2UKGgGaAloD0MIXi13ZoJNY0CUhpRSlGgVTegDaBZHQJWeo/bCaZx1fZQoaAZoCWgPQwhQbXAiepFjQJSGlFKUaBVN6ANoFkdAlZ8VvVEux3V9lChoBmgJaA9DCH/aqE4HfWFAlIaUUpRoFU3oA2gWR0CVoX9jgAIZdX2UKGgGaAloD0MIMpBnl+94ZECUhpRSlGgVTegDaBZHQJWjKom5UcZ1fZQoaAZoCWgPQwi+2HvxxcBkQJSGlFKUaBVN6ANoFkdAlazqWPcSG3V9lChoBmgJaA9DCBFzSdV2V2dAlIaUUpRoFU3oA2gWR0CVsNeg+QlsdX2UKGgGaAloD0MIb6DAO3l2Y0CUhpRSlGgVTegDaBZHQJW53vSc9W91fZQoaAZoCWgPQwjAkqtY/DhjQJSGlFKUaBVN6ANoFkdAlb9YvvjOs3V9lChoBmgJaA9DCArXo3C9a2ZAlIaUUpRoFU3oA2gWR0CVv5gBtDUmdX2UKGgGaAloD0MIKzBkdatPZUCUhpRSlGgVTegDaBZHQJXB/XUYsNF1fZQoaAZoCWgPQwj1ZtR8lc9kQJSGlFKUaBVN6ANoFkdAlcUvnGKhtnV9lChoBmgJaA9DCFiMutbeOmFAlIaUUpRoFU3oA2gWR0CVxk1h9b5edX2UKGgGaAloD0MImrD9ZAxMYUCUhpRSlGgVTegDaBZHQJXGzzCk43p1fZQoaAZoCWgPQwgK2uTwScRyQJSGlFKUaBVNZAJoFkdAlcfUgGKQ73V9lChoBmgJaA9DCHLBGfz9NmBAlIaUUpRoFU3oA2gWR0CVyO+lCTlldX2UKGgGaAloD0MIryZPWc2tYkCUhpRSlGgVTegDaBZHQJXJepXIU8F1fZQoaAZoCWgPQwg1YmafRyhlQJSGlFKUaBVN6ANoFkdAlcn7HMlkY3V9lChoBmgJaA9DCCm0rPvHxENAlIaUUpRoFU0AAWgWR0CVy7Y6GQCCdX2UKGgGaAloD0MIMBLacq5WaUCUhpRSlGgVTegDaBZHQJXpGnR9gF51fZQoaAZoCWgPQwj35GGh1qFgQJSGlFKUaBVN6ANoFkdAlemGKuSwGHV9lChoBmgJaA9DCIvdPqvMVWJAlIaUUpRoFU3oA2gWR0CV66z67/XHdX2UKGgGaAloD0MI1XYTfFPGY0CUhpRSlGgVTegDaBZHQJX2+ICU5dZ1fZQoaAZoCWgPQwiit3h4T5NlQJSGlFKUaBVN6ANoFkdAlfse7QLNOnV9lChoBmgJaA9DCGoy420l2mdAlIaUUpRoFU3oA2gWR0CWBIPTG5tndX2UKGgGaAloD0MITvBN02cHxr+UhpRSlGgVS+toFkdAlgZquGKyfXV9lChoBmgJaA9DCOmZXmKs7mNAlIaUUpRoFU3oA2gWR0CWCgUYKpkxdX2UKGgGaAloD0MI521sdiTLZUCUhpRSlGgVTegDaBZHQJYMuHFglWx1fZQoaAZoCWgPQwjx1Y7inPNjQJSGlFKUaBVN6ANoFkdAlhA4/Vy3kXV9lChoBmgJaA9DCBKlvcEXlWlAlIaUUpRoFU3oA2gWR0CWEWSgGr0bdX2UKGgGaAloD0MI5ngFoieNZUCUhpRSlGgVTegDaBZHQJYR/s/pt791fZQoaAZoCWgPQwhpb/CFya9dQJSGlFKUaBVN6ANoFkdAlhM2cnVoYnV9lChoBmgJaA9DCOrr+ZrlEjhAlIaUUpRoFUviaBZHQJYTwtcv/R51fZQoaAZoCWgPQwhgyyvX2wZlQJSGlFKUaBVN6ANoFkdAlhSLxqfvnnV9lChoBmgJaA9DCA3jbhCtlWNAlIaUUpRoFU3oA2gWR0CWFSh2nsLOdX2UKGgGaAloD0MIsirCTUbNZkCUhpRSlGgVTegDaBZHQJYVowPAfuF1fZQoaAZoCWgPQwhsByP2CVlmQJSGlFKUaBVN6ANoFkdAlhfXKGL1mXV9lChoBmgJaA9DCDbK+s3Ex1BAlIaUUpRoFUvSaBZHQJYcovGp++d1fZQoaAZoCWgPQwhzZOWXwRwwQJSGlFKUaBVL32gWR0CWHrBVuJk5dX2UKGgGaAloD0MILVvri4QGYUCUhpRSlGgVTegDaBZHQJYiZrTH80l1fZQoaAZoCWgPQwjC+6pcKA5iQJSGlFKUaBVN6ANoFkdAliLJvHcUNHV9lChoBmgJaA9DCKZ/SSpTNWZAlIaUUpRoFU3oA2gWR0CWN9bfP5YYdX2UKGgGaAloD0MIRnwnZj0RZkCUhpRSlGgVTegDaBZHQJZHojZ+QU51fZQoaAZoCWgPQwj3ksZoHfVdQJSGlFKUaBVN6ANoFkdAllGR7NSqEXV9lChoBmgJaA9DCDIdOj3vy2VAlIaUUpRoFU3oA2gWR0CWV0ybx3FDdX2UKGgGaAloD0MIi1QYWwj8YECUhpRSlGgVTegDaBZHQJZaTokiUxF1fZQoaAZoCWgPQwixMERO37ViQJSGlFKUaBVN6ANoFkdAll382NvOyHV9lChoBmgJaA9DCELpCyHnNWVAlIaUUpRoFU3oA2gWR0CWXzPepGWldX2UKGgGaAloD0MIISOgwhFwY0CUhpRSlGgVTegDaBZHQJZf3OTq0MR1fZQoaAZoCWgPQwi8yW/RyUdgQJSGlFKUaBVN6ANoFkdAlmHCGrS3LHV9lChoBmgJaA9DCGqjOh1IxGRAlIaUUpRoFU3oA2gWR0CWY0Idlum8dX2UKGgGaAloD0MIvK5fsBspZUCUhpRSlGgVTegDaBZHQJZjzRBu4w11fZQoaAZoCWgPQwgnF2NgHYdiQJSGlFKUaBVN6ANoFkdAlmYk7OmixnV9lChoBmgJaA9DCIkkehnFAEJAlIaUUpRoFUvcaBZHQJZqVGXokiV1fZQoaAZoCWgPQwh0CvKzkdc1QJSGlFKUaBVL+GgWR0CWarHxBmf5dX2UKGgGaAloD0MImIkipG4SY0CUhpRSlGgVTegDaBZHQJZriXokiUx1fZQoaAZoCWgPQwixNPCjGlRjQJSGlFKUaBVN6ANoFkdAlm2Sh37k4nV9lChoBmgJaA9DCFNBRdUvCmdAlIaUUpRoFU3oA2gWR0CWcRQZn+Q2dX2UKGgGaAloD0MIUHKHTeTDZUCUhpRSlGgVTegDaBZHQJZxbcYZVGV1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 256,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
namorisco_lander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a7f95a8bb9e2f20872cd22e555a1727b3f3735a6fad96412f641a3bc11408c3
3
+ size 87929
namorisco_lander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c180877dc2fa133c313f2307a8bfd80a7060f37acc10407da49aedc747ef851
3
+ size 43201
namorisco_lander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
namorisco_lander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (195 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 255.9624885606885, "std_reward": 24.492177525367598, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-10T17:06:59.923144"}