mistral-nanotron / config_tiny_mistral.py
thomwolf's picture
thomwolf HF staff
add pretrained model
0c6f487
raw
history blame
3 kB
""" Example python script to generate a YAML config file which can be used to run a training with nanotron. Refer to "examples" section in the `/README.md` for more information.
Usage:
```
python config_tiny_mistral.py
```
"""
import os
from dataclasses import dataclass
from typing import Optional
from nanotron.config import (
CheckpointsArgs,
Config,
DataArgs,
GeneralArgs,
LoggingArgs,
LRSchedulerArgs,
ModelArgs,
OptimizerArgs,
ParallelismArgs,
PretrainDatasetsArgs,
RandomInit,
TokenizerArgs,
TokensArgs,
)
from nanotron.logging import human_format
from config_mistral import MistralConfig, get_num_params
model_config = MistralConfig(
# Config for a tiny model model with 1.62M parameters
attn_pdrop=0.0,
bos_token_id=1,
eos_token_id=2,
hidden_act="silu",
hidden_size=16,
initializer_range=0.02,
intermediate_size=64,
max_position_embeddings=256,
num_attention_heads=4,
num_hidden_layers=2,
num_key_value_heads=4,
pretraining_tp=1,
rms_norm_eps=1e-05,
rope_theta=10000.0,
tie_word_embeddings=True,
use_cache=True,
vocab_size=256,
)
num_params = human_format(get_num_params(model_config)).replace(".", "p")
print(f"Model has {num_params} parameters")
seed = 42
learning_rate = LRSchedulerArgs(
learning_rate=3e-4, lr_warmup_steps=2, lr_warmup_style="linear", lr_decay_style="cosine", min_decay_lr=1e-5
)
optimizer = OptimizerArgs(
zero_stage=0,
weight_decay=0.01,
clip_grad=1.0,
accumulate_grad_in_fp32=True,
adam_eps=1e-08,
adam_beta1=0.9,
adam_beta2=0.95,
torch_adam_is_fused=True,
learning_rate_scheduler=learning_rate,
)
parallelism = ParallelismArgs(
dp=2,
pp=2,
tp=2,
pp_engine="1f1b",
tp_mode="REDUCE_SCATTER",
tp_linear_async_communication=True,
recompute_granularity="selective",
)
tokens = TokensArgs(sequence_length=32, train_steps=10, micro_batch_size=2, batch_accumulation_per_replica=1)
dataset = PretrainDatasetsArgs(
hf_dataset_or_datasets="HuggingFaceH4/testing_alpaca_small", text_column_name="completion"
)
checkpoints_path = os.path.dirname(os.path.dirname(__file__)) + "/checkpoints"
os.makedirs(checkpoints_path, exist_ok=True)
config = Config(
general=GeneralArgs(project="debug", run="tiny_mistral", seed=seed),
checkpoints=CheckpointsArgs(checkpoints_path=checkpoints_path, checkpoint_interval=10),
parallelism=parallelism,
model=ModelArgs(init_method=RandomInit(std=0.025), model_config=model_config),
tokenizer=TokenizerArgs("gpt2"),
optimizer=optimizer,
logging=LoggingArgs(),
tokens=tokens,
data=DataArgs(dataset=dataset, seed=seed),
profiler=None,
)
if __name__ == "__main__":
file_path = os.path.abspath(__file__)
file_path = file_path.replace(".py", ".yaml")
# Save config as YAML file
config.save_as_yaml(file_path)
# You can now train a model with this config using `/run_train.py`