mistral-nanotron / custom_evaluation_tasks.py
thomwolf's picture
thomwolf HF staff
add eval code
f1d3dc6
raw
history blame
25.5 kB
# ruff: noqa: F405, F403, F401
"""
Custom evaluation tasks for lighteval
This file generally create just a TASKS_TABLE and TASKS_GROUPS which are then imported by LightEval.
"""
import re
from dataclasses import asdict
from typing import Dict, List, Tuple
from custom_evaluation_utils import *
from lighteval.tasks.requests import Doc
# fmt: off
LETTER_INDICES = ["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z"]
# fmt: on
_TASKS_STRINGS: List[Tuple[CustomEvaluationTask, str]] = []
_TASKS: List[CustomEvaluationTask] = []
## COMMON_SENSE_REASONING_TASKS ##
COMMON_SENSE_REASONING_TASKS = [
CustomEvaluationTask(
name="hellaswag",
prompt_function="hellaswag_prompt",
hf_repo="hellaswag",
hf_subset="default",
metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
),
CustomEvaluationTask(
name="winogrande",
prompt_function="winogrande",
hf_repo="winogrande",
hf_subset="winogrande_xl",
metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
),
CustomEvaluationTask(
name="piqa",
prompt_function="piqa_harness",
hf_repo="piqa",
hf_subset="plain_text",
metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
),
CustomEvaluationTask(
name="siqa",
prompt_function="siqa_prompt",
hf_repo="lighteval/siqa",
hf_subset="default",
hf_avail_splits=["train", "validation"],
metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
),
CustomEvaluationTask(
name="openbookqa",
prompt_function="openbookqa",
hf_repo="openbookqa",
hf_subset="main",
metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
),
CustomEvaluationTask(
name="arc:easy",
prompt_function="arc",
hf_repo="ai2_arc",
hf_subset="ARC-Easy",
evaluation_splits=["test"],
generation_size=1,
metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
),
CustomEvaluationTask(
name="arc:challenge",
prompt_function="arc",
hf_repo="ai2_arc",
hf_subset="ARC-Challenge",
evaluation_splits=["test"],
generation_size=1,
metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
),
CustomEvaluationTask(
name="commonsense_qa",
prompt_function="commonsense_qa_prompt",
hf_repo="commonsense_qa",
hf_subset="default",
metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
),
]
def commonsense_qa_prompt(line, task_name: str = None):
return Doc(
task_name=task_name,
query=line["question"],
choices=[f" {c}" for c in line["choices"]["text"]],
gold_index=LETTER_INDICES.index(line["answerKey"].strip()),
instruction="",
)
def siqa_prompt(line, task_name: str = None):
return Doc(
task_name=task_name,
query=line["context"] + " " + line["question"],
choices=[f" {c}" for c in [line["answerA"], line["answerB"], line["answerC"]]],
gold_index=int(line["label"]) - 1,
instruction="",
)
def hellaswag_prompt(line, task_name: str = None):
def preprocess(text):
"""Comes from AiHarness"""
# text = text.strip()
# NOTE: Brackets are artifacts of the WikiHow dataset portion of HellaSwag.
text = text.replace(" [title]", ". ")
text = re.sub("\\[.*?\\]", "", text)
text = text.replace(" ", " ")
return text
ctx = f"{line['ctx_a']} {line['ctx_b'].capitalize()} "
return Doc(
task_name=task_name,
query=preprocess(line["activity_label"] + ": " + ctx),
choices=[" " + preprocess(ending) for ending in line["endings"]],
gold_index=int(line["label"]) if line["label"] != "" else -1, # -1 for test
# "metric": "choices_loglikelihood",
)
# 0 short for common sense
COMMON_SENSE_REASONING_STRING = [(t, f"custom|{t.name}|0|1") for t in COMMON_SENSE_REASONING_TASKS]
_TASKS_STRINGS.extend(COMMON_SENSE_REASONING_STRING)
_TASKS += COMMON_SENSE_REASONING_TASKS
## WORLD_KNOWLEDGE_TASKS ##
WORLD_KNOWLEDGE_TASKS = [
CustomEvaluationTask(
name="trivia_qa",
prompt_function="triviaqa",
hf_repo="trivia_qa",
hf_subset="rc.nocontext",
metric=[Metrics.quasi_exact_match2],
generation_size=20,
stop_sequence=["\n", ".", ","],
),
CustomEvaluationTask(
name="natural_questions",
prompt_function="natural_questions_prompt",
hf_repo="lighteval/natural_questions_clean",
hf_subset="default",
metric=[Metrics.quasi_exact_match2],
generation_size=20,
stop_sequence=["\n", ".", ","],
),
]
def natural_questions_prompt(line, task_name: str = None):
return Doc(
task_name=task_name,
query=line["question"] + "?\nAnswer: ",
choices=[line["short_answers"]],
gold_index=0,
instruction="",
)
WORLD_KNOWLEDGE_STRING = [(t, f"custom|{t.name}|5|1") for t in WORLD_KNOWLEDGE_TASKS]
# WORLD_KNOWLEDGE_STRING = {t: f'custom|{t.name}|0|1' for t in WORLD_KNOWLEDGE_TASKS}
_TASKS_STRINGS.extend(WORLD_KNOWLEDGE_STRING)
_TASKS += WORLD_KNOWLEDGE_TASKS
## Reading comprehension ##
READING_COMP_TASKS = [
CustomEvaluationTask(
name="super_glue:boolq",
prompt_function="boolq_prompt",
hf_repo="super_glue",
hf_subset="boolq",
metric=[Metrics.target_perplexity],
),
CustomEvaluationTask(
name="quac",
prompt_function="quac",
hf_repo="lighteval/quac_helm",
hf_subset="default",
metric=[Metrics.quasi_exact_match2],
generation_size=20,
stop_sequence=["\n", ".", ","],
),
]
def boolq_prompt(line, task_name: str = None):
return Doc(
task_name=task_name,
query=f"{line['passage']}\nQuestion: {line['question'].capitalize()}?\nAnswer:",
choices=[" No", " Yes"], # Only gold
gold_index=int(line["label"]),
)
READING_COMP_STRING = [(t, f"custom|{t.name}|0|1") for t in READING_COMP_TASKS]
_TASKS_STRINGS.extend(READING_COMP_STRING)
_TASKS += READING_COMP_TASKS
## MATH ##
class CustomMathEvaluationTask(CustomEvaluationTask):
"""Custom class for math tasks with all the defaults set"""
def __init__(
self,
name,
prompt_function="math",
hf_repo="lighteval/MATH",
hf_subset=None,
metric=[Metrics.math_quasi_exact_match],
hf_avail_splits=None,
evaluation_splits=["test"],
few_shots_split=None,
few_shots_select=None,
suite=["custom"],
generation_size=40,
stop_sequence=None,
output_regex=None,
frozen=False,
):
super().__init__(
name=name,
prompt_function=prompt_function,
hf_repo=hf_repo,
hf_subset=hf_subset,
metric=metric,
hf_avail_splits=hf_avail_splits,
evaluation_splits=evaluation_splits,
few_shots_split=few_shots_split,
few_shots_select=few_shots_select,
suite=suite,
generation_size=generation_size,
stop_sequence=stop_sequence,
output_regex=output_regex,
frozen=frozen,
)
MATH_TASKS = [
CustomMathEvaluationTask(name="math:algebra", hf_subset="algebra"),
CustomMathEvaluationTask(name="math:counting_and_probability", hf_subset="counting_and_probability"),
CustomMathEvaluationTask(name="math:geometry", hf_subset="geometry"),
CustomMathEvaluationTask(name="math:intermediate_algebra", hf_subset="intermediate_algebra"),
CustomMathEvaluationTask(name="math:number_theory", hf_subset="number_theory"),
CustomMathEvaluationTask(name="math:prealgebra", hf_subset="prealgebra"),
CustomMathEvaluationTask(name="math:precalculus", hf_subset="precalculus"),
]
GSM8K = CustomEvaluationTask(
name="gsm8k",
prompt_function="gsm8k",
hf_repo="gsm8k",
hf_subset="main",
hf_avail_splits=["train", "test"],
evaluation_splits=["test"],
metric=[Metrics.perfect_exact_match],
generation_size=10,
stop_sequence=["\n"],
)
MATH_STRING = [(t, f"custom|{t.name}|4|1") for t in MATH_TASKS]
GSM8K_STRING = [(GSM8K, f"custom|{GSM8K.name}|8|1")]
_TASKS_STRINGS.extend(MATH_STRING)
_TASKS_STRINGS.extend(GSM8K_STRING)
_TASKS += MATH_TASKS + [GSM8K]
## MMLU ##
class CustomMMLUEvaluationTask(CustomEvaluationTask):
def __init__(
self,
name,
prompt_function="mmlu_prompt",
hf_repo="lighteval/mmlu",
hf_subset=None,
# metric=[Metrics.loglikelihood_acc_single_token],
metric=[Metrics.loglikelihood_acc, Metrics.loglikelihood_acc_norm_nospace],
hf_avail_splits=None,
evaluation_splits=["test"],
few_shots_split="dev",
few_shots_select=None,
suite=None,
generation_size=-1,
stop_sequence=None,
output_regex=None,
frozen=False,
):
super().__init__(
name=name,
prompt_function=prompt_function,
hf_repo=hf_repo,
hf_subset=hf_subset,
metric=metric,
hf_avail_splits=hf_avail_splits,
evaluation_splits=evaluation_splits,
few_shots_split=few_shots_split,
few_shots_select=few_shots_select,
suite=suite,
generation_size=generation_size,
stop_sequence=stop_sequence,
output_regex=output_regex,
frozen=frozen,
)
MMLU_TASKS = [
CustomMMLUEvaluationTask(name="mmlu:abstract_algebra", hf_subset="abstract_algebra"),
CustomMMLUEvaluationTask(name="mmlu:anatomy", hf_subset="anatomy"),
CustomMMLUEvaluationTask(name="mmlu:astronomy", hf_subset="astronomy"),
CustomMMLUEvaluationTask(name="mmlu:business_ethics", hf_subset="business_ethics"),
CustomMMLUEvaluationTask(name="mmlu:clinical_knowledge", hf_subset="clinical_knowledge"),
CustomMMLUEvaluationTask(name="mmlu:college_biology", hf_subset="college_biology"),
CustomMMLUEvaluationTask(name="mmlu:college_chemistry", hf_subset="college_chemistry"),
CustomMMLUEvaluationTask(name="mmlu:college_computer_science", hf_subset="college_computer_science"),
CustomMMLUEvaluationTask(name="mmlu:college_mathematics", hf_subset="college_mathematics"),
CustomMMLUEvaluationTask(name="mmlu:college_medicine", hf_subset="college_medicine"),
CustomMMLUEvaluationTask(name="mmlu:college_physics", hf_subset="college_physics"),
CustomMMLUEvaluationTask(name="mmlu:computer_security", hf_subset="computer_security"),
CustomMMLUEvaluationTask(name="mmlu:conceptual_physics", hf_subset="conceptual_physics"),
CustomMMLUEvaluationTask(name="mmlu:econometrics", hf_subset="econometrics"),
CustomMMLUEvaluationTask(name="mmlu:electrical_engineering", hf_subset="electrical_engineering"),
CustomMMLUEvaluationTask(name="mmlu:elementary_mathematics", hf_subset="elementary_mathematics"),
CustomMMLUEvaluationTask(name="mmlu:formal_logic", hf_subset="formal_logic"),
CustomMMLUEvaluationTask(name="mmlu:global_facts", hf_subset="global_facts"),
CustomMMLUEvaluationTask(name="mmlu:high_school_biology", hf_subset="high_school_biology"),
CustomMMLUEvaluationTask(name="mmlu:high_school_chemistry", hf_subset="high_school_chemistry"),
CustomMMLUEvaluationTask(name="mmlu:high_school_computer_science", hf_subset="high_school_computer_science"),
CustomMMLUEvaluationTask(name="mmlu:high_school_european_history", hf_subset="high_school_european_history"),
CustomMMLUEvaluationTask(name="mmlu:high_school_geography", hf_subset="high_school_geography"),
CustomMMLUEvaluationTask(
name="mmlu:high_school_government_and_politics", hf_subset="high_school_government_and_politics"
),
CustomMMLUEvaluationTask(name="mmlu:high_school_macroeconomics", hf_subset="high_school_macroeconomics"),
CustomMMLUEvaluationTask(name="mmlu:high_school_mathematics", hf_subset="high_school_mathematics"),
CustomMMLUEvaluationTask(name="mmlu:high_school_microeconomics", hf_subset="high_school_microeconomics"),
CustomMMLUEvaluationTask(name="mmlu:high_school_physics", hf_subset="high_school_physics"),
CustomMMLUEvaluationTask(name="mmlu:high_school_psychology", hf_subset="high_school_psychology"),
CustomMMLUEvaluationTask(name="mmlu:high_school_statistics", hf_subset="high_school_statistics"),
CustomMMLUEvaluationTask(name="mmlu:high_school_us_history", hf_subset="high_school_us_history"),
CustomMMLUEvaluationTask(name="mmlu:high_school_world_history", hf_subset="high_school_world_history"),
CustomMMLUEvaluationTask(name="mmlu:human_aging", hf_subset="human_aging"),
CustomMMLUEvaluationTask(name="mmlu:human_sexuality", hf_subset="human_sexuality"),
CustomMMLUEvaluationTask(name="mmlu:international_law", hf_subset="international_law"),
CustomMMLUEvaluationTask(name="mmlu:jurisprudence", hf_subset="jurisprudence"),
CustomMMLUEvaluationTask(name="mmlu:logical_fallacies", hf_subset="logical_fallacies"),
CustomMMLUEvaluationTask(name="mmlu:machine_learning", hf_subset="machine_learning"),
CustomMMLUEvaluationTask(name="mmlu:management", hf_subset="management"),
CustomMMLUEvaluationTask(name="mmlu:marketing", hf_subset="marketing"),
CustomMMLUEvaluationTask(name="mmlu:medical_genetics", hf_subset="medical_genetics"),
CustomMMLUEvaluationTask(name="mmlu:miscellaneous", hf_subset="miscellaneous"),
CustomMMLUEvaluationTask(name="mmlu:moral_disputes", hf_subset="moral_disputes"),
CustomMMLUEvaluationTask(name="mmlu:moral_scenarios", hf_subset="moral_scenarios"),
CustomMMLUEvaluationTask(name="mmlu:nutrition", hf_subset="nutrition"),
CustomMMLUEvaluationTask(name="mmlu:philosophy", hf_subset="philosophy"),
CustomMMLUEvaluationTask(name="mmlu:prehistory", hf_subset="prehistory"),
CustomMMLUEvaluationTask(name="mmlu:professional_accounting", hf_subset="professional_accounting"),
CustomMMLUEvaluationTask(name="mmlu:professional_law", hf_subset="professional_law"),
CustomMMLUEvaluationTask(name="mmlu:professional_medicine", hf_subset="professional_medicine"),
CustomMMLUEvaluationTask(name="mmlu:professional_psychology", hf_subset="professional_psychology"),
CustomMMLUEvaluationTask(name="mmlu:public_relations", hf_subset="public_relations"),
CustomMMLUEvaluationTask(name="mmlu:security_studies", hf_subset="security_studies"),
CustomMMLUEvaluationTask(name="mmlu:sociology", hf_subset="sociology"),
CustomMMLUEvaluationTask(name="mmlu:us_foreign_policy", hf_subset="us_foreign_policy"),
CustomMMLUEvaluationTask(name="mmlu:virology", hf_subset="virology"),
CustomMMLUEvaluationTask(name="mmlu:world_religions", hf_subset="world_religions"),
]
def mmlu_harness(line, task_name: str = None):
topic = line["subject"]
prompt = f"The following are multiple choice questions (with answers) about {topic.replace('_', ' ')}.\n\n"
prompt += line["question"] + "\n"
prompt += "".join([f"{key}. {choice}\n" for key, choice in zip(LETTER_INDICES, line["choices"])])
prompt += "Answer:"
gold_ix = LETTER_INDICES.index(line["answer"]) if isinstance(line["answer"], str) else line["answer"]
"__few_shots" in line and line["__few_shots"] is True # We are adding few shots
return Doc(
task_name=task_name,
query=prompt,
choices=[" A", " B", " C", " D"],
target_for_fewshot_sorting=[" A", " B", " C", " D"][gold_ix],
gold_index=gold_ix,
instruction=f"The following are multiple choice questions (with answers) about {topic.replace('_', ' ')}.\n\n",
)
def mmlu_prompt(line, task_name: str = None):
"""MMLU prompt without letters"""
topic = line["subject"]
prompt = f"The following are questions about {topic.replace('_', ' ')}.\nQuestion: "
prompt += line["question"] + "\nAnswer:"
return Doc(
task_name=task_name,
query=prompt,
choices=[f" {c}" for c in line["choices"]],
gold_index=line["answer"],
instruction=f"The following are questions about {topic.replace('_', ' ')}.\n",
)
# MMLU_STRING = {t: f'custom|{t.name}|5|1' for t in MMLU_TASKS}
MMLU_STRING = [(t, f"custom|{t.name}|0|1") for t in MMLU_TASKS]
_TASKS_STRINGS.extend(MMLU_STRING)
_TASKS += MMLU_TASKS
## BBH ##
class CustomBBHEvaluationTask(CustomEvaluationTask):
def __init__(
self,
name,
prompt_function="bbh_prompt",
hf_repo="lighteval/big_bench_hard",
hf_subset=None,
metric=[Metrics.exact_match],
hf_avail_splits=["train"],
evaluation_splits=["train"],
few_shots_split="train",
few_shots_select=None,
suite=None,
generation_size=4,
stop_sequence=None,
output_regex=None,
frozen=False,
):
super().__init__(
name=name,
prompt_function=prompt_function,
hf_repo=hf_repo,
hf_subset=hf_subset,
metric=metric,
hf_avail_splits=hf_avail_splits,
evaluation_splits=evaluation_splits,
few_shots_split=few_shots_split,
few_shots_select=few_shots_select,
suite=suite,
generation_size=generation_size,
stop_sequence=stop_sequence,
output_regex=output_regex,
frozen=frozen,
)
BBH_TASKS = [
CustomBBHEvaluationTask(name="bbh:boolean_expressions", hf_subset="boolean_expressions"),
CustomBBHEvaluationTask(name="bbh:causal_judgement", hf_subset="causal_judgement"),
CustomBBHEvaluationTask(name="bbh:date_understanding", hf_subset="date_understanding"),
CustomBBHEvaluationTask(name="bbh:disambiguation_qa", hf_subset="disambiguation_qa"),
CustomBBHEvaluationTask(name="bbh:dyck_languages", hf_subset="dyck_languages"),
CustomBBHEvaluationTask(name="bbh:formal_fallacies", hf_subset="formal_fallacies"),
CustomBBHEvaluationTask(name="bbh:geometric_shapes", hf_subset="geometric_shapes"),
CustomBBHEvaluationTask(name="bbh:hyperbaton", hf_subset="hyperbaton"),
CustomBBHEvaluationTask(name="bbh:logical_deduction_five_objects", hf_subset="logical_deduction_five_objects"),
CustomBBHEvaluationTask(name="bbh:logical_deduction_seven_objects", hf_subset="logical_deduction_seven_objects"),
CustomBBHEvaluationTask(name="bbh:logical_deduction_three_objects", hf_subset="logical_deduction_three_objects"),
CustomBBHEvaluationTask(name="bbh:movie_recommendation", hf_subset="movie_recommendation"),
CustomBBHEvaluationTask(name="bbh:multistep_arithmetic_two", hf_subset="multistep_arithmetic_two"),
CustomBBHEvaluationTask(name="bbh:navigate", hf_subset="navigate"),
CustomBBHEvaluationTask(name="bbh:object_counting", hf_subset="object_counting"),
CustomBBHEvaluationTask(name="bbh:penguins_in_a_table", hf_subset="penguins_in_a_table"),
CustomBBHEvaluationTask(name="bbh:reasoning_about_colored_objects", hf_subset="reasoning_about_colored_objects"),
CustomBBHEvaluationTask(name="bbh:ruin_names", hf_subset="ruin_names"),
CustomBBHEvaluationTask(
name="bbh:salient_translation_error_detection", hf_subset="salient_translation_error_detection"
),
CustomBBHEvaluationTask(name="bbh:snarks", hf_subset="snarks"),
CustomBBHEvaluationTask(name="bbh:sports_understanding", hf_subset="sports_understanding"),
CustomBBHEvaluationTask(name="bbh:temporal_sequences", hf_subset="temporal_sequences"),
CustomBBHEvaluationTask(
name="bbh:tracking_shuffled_objects_five_objects", hf_subset="tracking_shuffled_objects_five_objects"
),
CustomBBHEvaluationTask(
name="bbh:tracking_shuffled_objects_seven_objects", hf_subset="tracking_shuffled_objects_seven_objects"
),
CustomBBHEvaluationTask(
name="bbh:tracking_shuffled_objects_three_objects", hf_subset="tracking_shuffled_objects_three_objects"
),
CustomBBHEvaluationTask(name="bbh:web_of_lies", hf_subset="web_of_lies"),
CustomBBHEvaluationTask(name="bbh:word_sorting", hf_subset="word_sorting"),
]
def bbh_prompt(line, task_name: str = None):
return Doc(
task_name=task_name,
query=line["input"] + "\nAnswer: ",
choices=[line["target"]],
gold_index=0,
)
# BBH_STRING = {t: f'custom|{t.name}|3|1' for t in BBH_TASKS}
BBH_STRING = [(t, f"custom|{t.name}|0|1") for t in BBH_TASKS]
_TASKS_STRINGS.extend(BBH_STRING)
_TASKS += BBH_TASKS
## AGI eval ##
class CustomAGIEvalEvaluationTask(CustomEvaluationTask):
def __init__(
self,
name,
prompt_function="agi_eval_prompt_no_letters",
hf_repo="lighteval/agi_eval_en",
hf_subset=None,
# metric=[Metrics.loglikelihood_acc_single_token],
metric=[Metrics.loglikelihood_acc, Metrics.loglikelihood_acc_norm_nospace],
hf_avail_splits=["train", "validation"],
evaluation_splits=["train"],
few_shots_split="validation",
few_shots_select=None,
suite=None,
generation_size=-1,
stop_sequence=None,
output_regex=None,
frozen=False,
):
super().__init__(
name=name,
prompt_function=prompt_function,
hf_repo=hf_repo,
hf_subset=hf_subset,
metric=metric,
hf_avail_splits=hf_avail_splits,
evaluation_splits=evaluation_splits,
few_shots_split=few_shots_split,
few_shots_select=few_shots_select,
suite=suite,
generation_size=generation_size,
stop_sequence=stop_sequence,
output_regex=output_regex,
frozen=frozen,
)
AGIEVAL_TASKS = [
CustomAGIEvalEvaluationTask(name="agi_eval:aqua_rat", hf_subset="aqua_rat"),
CustomAGIEvalEvaluationTask(name="agi_eval:logiqa-en", hf_subset="logiqa-en"),
CustomAGIEvalEvaluationTask(name="agi_eval:lsat-ar", hf_subset="lsat-ar"),
CustomAGIEvalEvaluationTask(name="agi_eval:lsat-lr", hf_subset="lsat-lr"),
CustomAGIEvalEvaluationTask(name="agi_eval:lsat-rc", hf_subset="lsat-rc"),
CustomAGIEvalEvaluationTask(
name="agi_eval:math",
hf_subset="math",
prompt_function="agi_eval_math_prompt",
metric=[Metrics.exact_match, Metrics.quasi_exact_match2],
generation_size=40,
),
CustomAGIEvalEvaluationTask(name="agi_eval:sat-en", hf_subset="sat-en"),
CustomAGIEvalEvaluationTask(name="agi_eval:sat-math", hf_subset="sat-math"),
]
def agi_eval_math_prompt(line, task_name: str = None):
return Doc(
task_name=task_name,
query=line["question"],
choices=[line["answer"]],
gold_index=0,
instruction="",
)
def agi_eval_prompt(line, task_name: str = None):
cleaned_options = [o.replace("(", "").replace(")", " ") for o in line["options"]]
prompt = "The following are multiple choice questions (with answers).\n\n"
prompt += line["question"] + "\n" + "\n".join(cleaned_options) + "\n"
prompt += "Answer: "
choices = LETTER_INDICES[: len(line["options"])]
output = Doc(
query=prompt,
instruction="The following are multiple choice questions (with answers).\n\n",
)
if line["label"]:
output.choices = choices
output.gold_index = LETTER_INDICES.index(line["label"].strip())
else:
output.choices = [line["answer"]]
output.gold_index = 0
return output
def agi_eval_prompt_no_letters(line, task_name: str = None):
cleaned_options = [
" " + o.replace("(A)", "").replace("(B)", "").replace("(C)", "").replace("(D)", "").replace("(E)", "")
for o in line["options"]
]
output = Doc(
query=line["question"],
choices=cleaned_options,
gold_index=LETTER_INDICES.index(line["label"].strip()),
instruction="",
)
return output
# AGIEVAL_STRING = {t: f'custom|{t.name}|5|1' for t in AGIEVAL_TASKS}
AGIEVAL_STRING = [(t, f"custom|{t.name}|0|1") for t in AGIEVAL_TASKS]
_TASKS_STRINGS.extend(AGIEVAL_STRING)
_TASKS += AGIEVAL_TASKS
## HUMAN EVAL ##
# human_eval = CustomEvaluationTask(
# name="human_eval",
# prompt_function="human_eval",
# hf_repo="lighteval/human_eval",
# metric=["human_eval_pass_at_1"],
# ),
def has_generative_metrics(task: CustomEvaluationTask) -> bool:
for metric in task.metric:
if metric in NEEDS_GENERATION_ONLY:
return True
return False
EARLY_SIGNAL_TASKS = ",".join([t[1] for t in COMMON_SENSE_REASONING_STRING] + [t[1] for t in MMLU_STRING])
# Convert to dict for lighteval
TASKS_TABLE = [asdict(task) for task in _TASKS]
# You can have a few pre-organised groups of tasks
TASKS_GROUPS = {
"all": ",".join(t[1] for t in _TASKS_STRINGS),
"early-signal": EARLY_SIGNAL_TASKS,
"non-generatives": ",".join(t for k, t in _TASKS_STRINGS if not has_generative_metrics(k)),
"generatives": ",".join(t for k, t in _TASKS_STRINGS if has_generative_metrics(k)),
}
if __name__ == "__main__":
print(t["name"] for t in TASKS_TABLE)
print(len(TASKS_TABLE))