--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: whripser-small-thai results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: th split: test args: th metrics: - name: Wer type: wer value: 90.98360655737704 --- # whripser-small-thai This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3703 - Wer: 90.9836 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-07 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.4319 | 2.0 | 1000 | 0.4203 | 97.5410 | | 0.4003 | 4.0 | 2000 | 0.3933 | 95.0820 | | 0.3844 | 6.0 | 3000 | 0.3800 | 93.0328 | | 0.3876 | 8.0 | 4000 | 0.3729 | 91.8033 | | 0.3899 | 10.0 | 5000 | 0.3703 | 90.9836 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2