nastasev commited on
Commit
98b671b
1 Parent(s): 714a5d5

Upload 6 files

Browse files
Files changed (6) hide show
  1. README.md +3 -0
  2. config.json +52 -0
  3. inference.py +25 -0
  4. model.safetensors +3 -0
  5. preprocessor_config.json +22 -0
  6. train.py +112 -0
README.md ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ Training of https://github.com/yuechen-yang/garbage-classification using this dataset: https://www.kaggle.com/datasets/mostafaabla/garbage-classification
2
+
3
+
config.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "google/vit-base-patch16-224-in21k",
3
+ "architectures": [
4
+ "ViTForImageClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "encoder_stride": 16,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.0,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "battery",
13
+ "1": "biological",
14
+ "10": "trash",
15
+ "11": "white-glass",
16
+ "2": "brown-glass",
17
+ "3": "cardboard",
18
+ "4": "clothes",
19
+ "5": "green-glass",
20
+ "6": "metal",
21
+ "7": "paper",
22
+ "8": "plastic",
23
+ "9": "shoes"
24
+ },
25
+ "image_size": 224,
26
+ "initializer_range": 0.02,
27
+ "intermediate_size": 3072,
28
+ "label2id": {
29
+ "battery": "0",
30
+ "biological": "1",
31
+ "brown-glass": "2",
32
+ "cardboard": "3",
33
+ "clothes": "4",
34
+ "green-glass": "5",
35
+ "metal": "6",
36
+ "paper": "7",
37
+ "plastic": "8",
38
+ "shoes": "9",
39
+ "trash": "10",
40
+ "white-glass": "11"
41
+ },
42
+ "layer_norm_eps": 1e-12,
43
+ "model_type": "vit",
44
+ "num_attention_heads": 12,
45
+ "num_channels": 3,
46
+ "num_hidden_layers": 12,
47
+ "patch_size": 16,
48
+ "problem_type": "single_label_classification",
49
+ "qkv_bias": true,
50
+ "torch_dtype": "float32",
51
+ "transformers_version": "4.46.1"
52
+ }
inference.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import ViTFeatureExtractor, ViTForImageClassification
2
+ from PIL import Image
3
+ import torch
4
+
5
+ model_name = "saved_model"
6
+
7
+ model = ViTForImageClassification.from_pretrained(model_name)
8
+ feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
9
+
10
+ model.eval()
11
+
12
+ image_path = '/path/'
13
+ image = Image.open(image_path).convert('RGB')
14
+
15
+ inputs = feature_extractor(images=image, return_tensors="pt")
16
+
17
+ with torch.no_grad():
18
+ outputs = model(**inputs)
19
+ logits = outputs.logits
20
+
21
+ predicted_class_idx = logits.argmax(-1).item()
22
+
23
+ classes = model.config.id2label
24
+
25
+ print(f"Predicted class: {classes[predicted_class_idx]}")
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5e015ae0d2050e8ab7c4283977cf0368815bc8917b73cd34e69eece961579a7
3
+ size 343254736
preprocessor_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "do_rescale": true,
4
+ "do_resize": true,
5
+ "image_mean": [
6
+ 0.5,
7
+ 0.5,
8
+ 0.5
9
+ ],
10
+ "image_processor_type": "ViTFeatureExtractor",
11
+ "image_std": [
12
+ 0.5,
13
+ 0.5,
14
+ 0.5
15
+ ],
16
+ "resample": 2,
17
+ "rescale_factor": 0.00392156862745098,
18
+ "size": {
19
+ "height": 224,
20
+ "width": 224
21
+ }
22
+ }
train.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import math
3
+ from torchvision.datasets import ImageFolder
4
+ from torch.utils.data import DataLoader
5
+ from transformers import ViTFeatureExtractor, ViTForImageClassification
6
+ import kagglehub
7
+ from torch.optim import AdamW
8
+ from transformers import get_scheduler
9
+ from tqdm.auto import tqdm
10
+
11
+
12
+ gpu_available = torch.cuda.is_available()
13
+ print("GPU available:", gpu_available)
14
+
15
+ if gpu_available:
16
+ print("GPU:", torch.cuda.get_device_name(0))
17
+ print("GPU count:", torch.cuda.device_count())
18
+ print("#memory avail:", torch.cuda.get_device_properties(0).total_memory / (1024 ** 3), "GB")
19
+ else:
20
+ print("No GPU available.")
21
+
22
+
23
+ kaggle_path = kagglehub.dataset_download("mostafaabla/garbage-classification")
24
+
25
+ folder_root_path = kaggle_path+'/garbage_classification'
26
+ print("Path to dataset files:", kaggle_path)
27
+
28
+ ds = ImageFolder(folder_root_path)
29
+ indices = torch.randperm(len(ds)).tolist()
30
+ n_val = math.floor(len(indices) * .20)
31
+ train_ds = torch.utils.data.Subset(ds, indices[:-n_val])
32
+ val_ds = torch.utils.data.Subset(ds, indices[-n_val:])
33
+
34
+ print(ds.classes)
35
+
36
+ label2id = {}
37
+ id2label = {}
38
+
39
+ for i, class_name in enumerate(ds.classes):
40
+ label2id[class_name] = str(i)
41
+ id2label[str(i)] = class_name
42
+
43
+
44
+ class ImageClassificationCollator:
45
+ def __init__(self, feature_extractor):
46
+ self.feature_extractor = feature_extractor
47
+
48
+ def __call__(self, batch):
49
+ encodings = self.feature_extractor([x[0] for x in batch], return_tensors='pt')
50
+ encodings['labels'] = torch.tensor([x[1] for x in batch], dtype=torch.long)
51
+ return encodings
52
+
53
+
54
+ feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k')
55
+
56
+ model = ViTForImageClassification.from_pretrained(
57
+ 'google/vit-base-patch16-224-in21k',
58
+ num_labels=len(label2id),
59
+ label2id=label2id,
60
+ id2label=id2label
61
+ )
62
+ collator = ImageClassificationCollator(feature_extractor)
63
+ train_loader = DataLoader(train_ds, batch_size=16, collate_fn=collator, num_workers=2, shuffle=True)
64
+ val_loader = DataLoader(val_ds, batch_size=16, collate_fn=collator, num_workers=2)
65
+
66
+ optimizer = AdamW(model.parameters(), lr=5e-5)
67
+
68
+ num_epochs = 10
69
+ num_training_steps = num_epochs * len(train_loader)
70
+ lr_scheduler = get_scheduler(
71
+ name="linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps
72
+ )
73
+
74
+ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
75
+ model.to(device)
76
+
77
+
78
+ progress_bar = tqdm(range(num_training_steps))
79
+
80
+ model.train()
81
+ for epoch in range(num_epochs):
82
+ for batch in train_loader:
83
+ batch = {k: v.to(device) for k, v in batch.items()}
84
+ outputs = model(**batch)
85
+ loss = outputs.loss
86
+ loss.backward()
87
+
88
+ optimizer.step()
89
+ lr_scheduler.step()
90
+ optimizer.zero_grad()
91
+ progress_bar.update(1)
92
+
93
+
94
+ model.eval()
95
+ for batch in val_loader:
96
+ batch = {k: v.to(device) for k, v in batch.items()}
97
+ with torch.no_grad():
98
+ outputs = model(**batch)
99
+
100
+ logits = outputs.logits
101
+ predictions = torch.argmax(logits, dim=-1)
102
+
103
+ import os
104
+
105
+ save_directory = "./saved_model"
106
+ if not os.path.exists(save_directory):
107
+ os.makedirs(save_directory)
108
+
109
+ model.save_pretrained(save_directory)
110
+ feature_extractor.save_pretrained(save_directory)
111
+
112
+ print(f"Model saved: {save_directory}")