from transformers import ViTFeatureExtractor, ViTForImageClassification from PIL import Image import torch model_name = "saved_model" model = ViTForImageClassification.from_pretrained(model_name) feature_extractor = ViTFeatureExtractor.from_pretrained(model_name) model.eval() image_path = '/path/' image = Image.open(image_path).convert('RGB') inputs = feature_extractor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() classes = model.config.id2label print(f"Predicted class: {classes[predicted_class_idx]}")