--- license: other tags: - generated_from_keras_callback model-index: - name: nateraw/mit-b0-finetuned-sidewalks-v2 results: [] --- # nateraw/mit-b0-finetuned-sidewalks-v2 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.8462 - Validation Loss: 0.6135 - Validation Mean Iou: 0.2551 - Validation Mean Accuracy: 0.2960 - Validation Overall Accuracy: 0.8200 - Validation Per Category Iou: [0. 0.66967645 0.80571406 0.56416239 0.66692248 0.24744912 nan 0.23994505 0.28962463 0. 0.76504783 0. 0. 0. 0. 0.14111353 0. 0. 0.6924468 0. 0.27988701 0.41876094 0. nan 0. 0.14755829 0. 0. 0.81614463 0.68429711 0.87710938 0. 0. 0.11234171 0. ] - Validation Per Category Accuracy: [0. 0.83805933 0.94928385 0.59586511 0.72913519 0.30595504 nan 0.3128234 0.34805831 0. 0.87847495 0. 0. 0. 0. 0.14205167 0. 0. 0.87543619 0. 0.36001144 0.49498574 0. nan 0. 0.18179115 0. 0. 0.92867923 0.7496178 0.92220166 0. 0. 0.15398549 0. ] - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 6e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Validation Mean Iou | Validation Mean Accuracy | Validation Overall Accuracy | Validation Per Category Iou | Validation Per Category Accuracy | Epoch | |:----------:|:---------------:|:-------------------:|:------------------------:|:---------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----:| | 1.4089 | 0.8220 | 0.1975 | 0.2427 | 0.7701 | [0. 0.58353931 0.7655921 0.04209491 0.53135026 0.11779776 nan 0.07709853 0.15950712 0. 0.69634813 0. 0. 0. 0. 0. 0. 0. 0.61456822 0. 0.24971248 0.27129675 0. nan 0. 0.07697324 0. 0. 0.78576516 0.61267064 0.84564576 0. 0. 0.08904216 0. ] | [0. 0.88026971 0.93475302 0.04216372 0.5484085 0.13285614 nan 0.08669707 0.19044773 0. 0.90089024 0. 0. 0. 0. 0. 0. 0. 0.76783975 0. 0.42102101 0.28659817 0. nan 0. 0.08671771 0. 0. 0.89590301 0.74932576 0.9434814 0. 0. 0.14245566 0. ] | 0 | | 0.8462 | 0.6135 | 0.2551 | 0.2960 | 0.8200 | [0. 0.66967645 0.80571406 0.56416239 0.66692248 0.24744912 nan 0.23994505 0.28962463 0. 0.76504783 0. 0. 0. 0. 0.14111353 0. 0. 0.6924468 0. 0.27988701 0.41876094 0. nan 0. 0.14755829 0. 0. 0.81614463 0.68429711 0.87710938 0. 0. 0.11234171 0. ] | [0. 0.83805933 0.94928385 0.59586511 0.72913519 0.30595504 nan 0.3128234 0.34805831 0. 0.87847495 0. 0. 0. 0. 0.14205167 0. 0. 0.87543619 0. 0.36001144 0.49498574 0. nan 0. 0.18179115 0. 0. 0.92867923 0.7496178 0.92220166 0. 0. 0.15398549 0. ] | 1 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.0 - Tokenizers 0.13.2