navakanth-reddy
commited on
Commit
•
5e5cff5
1
Parent(s):
e3217bc
End of training
Browse files- README.md +79 -0
- preprocessor_config.json +14 -0
- pytorch_model.bin +1 -1
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +80 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: microsoft/layoutlm-base-uncased
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- funsd
|
7 |
+
model-index:
|
8 |
+
- name: layoutlm-funsd
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# layoutlm-funsd
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.7080
|
20 |
+
- Answer: {'precision': 0.7122381477398015, 'recall': 0.7985166872682324, 'f1': 0.752913752913753, 'number': 809}
|
21 |
+
- Header: {'precision': 0.3359375, 'recall': 0.36134453781512604, 'f1': 0.3481781376518218, 'number': 119}
|
22 |
+
- Question: {'precision': 0.7817531305903399, 'recall': 0.8206572769953052, 'f1': 0.8007329363261567, 'number': 1065}
|
23 |
+
- Overall Precision: 0.7260
|
24 |
+
- Overall Recall: 0.7842
|
25 |
+
- Overall F1: 0.7540
|
26 |
+
- Overall Accuracy: 0.8073
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 3e-05
|
46 |
+
- train_batch_size: 16
|
47 |
+
- eval_batch_size: 8
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 15
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
57 |
+
| 1.4164 | 1.0 | 10 | 1.1867 | {'precision': 0.21566110397946084, 'recall': 0.207663782447466, 'f1': 0.21158690176322417, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.48124557678697805, 'recall': 0.6384976525821596, 'f1': 0.5488297013720743, 'number': 1065} | 0.3869 | 0.4255 | 0.4053 | 0.6139 |
|
58 |
+
| 1.0235 | 2.0 | 20 | 0.8815 | {'precision': 0.578494623655914, 'recall': 0.6650185414091471, 'f1': 0.6187464059804485, 'number': 809} | {'precision': 0.05555555555555555, 'recall': 0.008403361344537815, 'f1': 0.014598540145985401, 'number': 119} | {'precision': 0.6398687448728466, 'recall': 0.7323943661971831, 'f1': 0.6830122591943958, 'number': 1065} | 0.6087 | 0.6618 | 0.6341 | 0.7403 |
|
59 |
+
| 0.7822 | 3.0 | 30 | 0.7564 | {'precision': 0.6335403726708074, 'recall': 0.7564894932014833, 'f1': 0.6895774647887324, 'number': 809} | {'precision': 0.13559322033898305, 'recall': 0.06722689075630252, 'f1': 0.0898876404494382, 'number': 119} | {'precision': 0.6905158069883528, 'recall': 0.7793427230046949, 'f1': 0.7322452580502868, 'number': 1065} | 0.6511 | 0.7275 | 0.6872 | 0.7697 |
|
60 |
+
| 0.6495 | 4.0 | 40 | 0.6955 | {'precision': 0.6533333333333333, 'recall': 0.7873918417799752, 'f1': 0.7141255605381165, 'number': 809} | {'precision': 0.19480519480519481, 'recall': 0.12605042016806722, 'f1': 0.15306122448979592, 'number': 119} | {'precision': 0.7162276975361087, 'recall': 0.7915492957746478, 'f1': 0.752007136485281, 'number': 1065} | 0.6707 | 0.7501 | 0.7082 | 0.7915 |
|
61 |
+
| 0.5641 | 5.0 | 50 | 0.6796 | {'precision': 0.6843267108167771, 'recall': 0.7663782447466008, 'f1': 0.7230320699708457, 'number': 809} | {'precision': 0.275, 'recall': 0.18487394957983194, 'f1': 0.22110552763819097, 'number': 119} | {'precision': 0.7565217391304347, 'recall': 0.8169014084507042, 'f1': 0.7855530474040633, 'number': 1065} | 0.7079 | 0.7587 | 0.7324 | 0.7899 |
|
62 |
+
| 0.4862 | 6.0 | 60 | 0.6563 | {'precision': 0.6844978165938864, 'recall': 0.7750309023485785, 'f1': 0.7269565217391305, 'number': 809} | {'precision': 0.28, 'recall': 0.23529411764705882, 'f1': 0.2557077625570776, 'number': 119} | {'precision': 0.7420168067226891, 'recall': 0.8291079812206573, 'f1': 0.7831485587583149, 'number': 1065} | 0.6972 | 0.7717 | 0.7326 | 0.8007 |
|
63 |
+
| 0.4389 | 7.0 | 70 | 0.6444 | {'precision': 0.6868365180467091, 'recall': 0.799752781211372, 'f1': 0.7390062821245003, 'number': 809} | {'precision': 0.28703703703703703, 'recall': 0.2605042016806723, 'f1': 0.27312775330396477, 'number': 119} | {'precision': 0.7411167512690355, 'recall': 0.8225352112676056, 'f1': 0.7797062750333779, 'number': 1065} | 0.6962 | 0.7797 | 0.7356 | 0.8040 |
|
64 |
+
| 0.3912 | 8.0 | 80 | 0.6505 | {'precision': 0.7074527252502781, 'recall': 0.7861557478368356, 'f1': 0.7447306791569087, 'number': 809} | {'precision': 0.3392857142857143, 'recall': 0.31932773109243695, 'f1': 0.32900432900432897, 'number': 119} | {'precision': 0.7689594356261023, 'recall': 0.8187793427230047, 'f1': 0.793087767166894, 'number': 1065} | 0.7207 | 0.7757 | 0.7472 | 0.8073 |
|
65 |
+
| 0.3511 | 9.0 | 90 | 0.6696 | {'precision': 0.7147577092511013, 'recall': 0.8022249690976514, 'f1': 0.7559697146185206, 'number': 809} | {'precision': 0.296, 'recall': 0.31092436974789917, 'f1': 0.30327868852459017, 'number': 119} | {'precision': 0.7589833479404031, 'recall': 0.8131455399061033, 'f1': 0.7851314596554851, 'number': 1065} | 0.7139 | 0.7787 | 0.7449 | 0.8042 |
|
66 |
+
| 0.3166 | 10.0 | 100 | 0.6746 | {'precision': 0.7190265486725663, 'recall': 0.8034610630407911, 'f1': 0.7589025102159953, 'number': 809} | {'precision': 0.35398230088495575, 'recall': 0.33613445378151263, 'f1': 0.3448275862068966, 'number': 119} | {'precision': 0.7753108348134992, 'recall': 0.819718309859155, 'f1': 0.7968963943404839, 'number': 1065} | 0.7294 | 0.7842 | 0.7558 | 0.8081 |
|
67 |
+
| 0.2925 | 11.0 | 110 | 0.6839 | {'precision': 0.7160356347438753, 'recall': 0.7948084054388134, 'f1': 0.753368482718219, 'number': 809} | {'precision': 0.3208955223880597, 'recall': 0.36134453781512604, 'f1': 0.33992094861660077, 'number': 119} | {'precision': 0.7803780378037803, 'recall': 0.8140845070422535, 'f1': 0.796875, 'number': 1065} | 0.7247 | 0.7792 | 0.7510 | 0.8087 |
|
68 |
+
| 0.2837 | 12.0 | 120 | 0.6853 | {'precision': 0.7161862527716186, 'recall': 0.7985166872682324, 'f1': 0.7551139684395091, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.3445378151260504, 'f1': 0.33884297520661155, 'number': 119} | {'precision': 0.7751322751322751, 'recall': 0.8253521126760563, 'f1': 0.7994542974079127, 'number': 1065} | 0.7253 | 0.7858 | 0.7543 | 0.8064 |
|
69 |
+
| 0.265 | 13.0 | 130 | 0.7016 | {'precision': 0.7069154774972558, 'recall': 0.796044499381953, 'f1': 0.7488372093023256, 'number': 809} | {'precision': 0.31654676258992803, 'recall': 0.3697478991596639, 'f1': 0.3410852713178294, 'number': 119} | {'precision': 0.7867513611615246, 'recall': 0.8140845070422535, 'f1': 0.8001845869866173, 'number': 1065} | 0.7226 | 0.7802 | 0.7503 | 0.8076 |
|
70 |
+
| 0.2475 | 14.0 | 140 | 0.7055 | {'precision': 0.7084708470847084, 'recall': 0.796044499381953, 'f1': 0.749708963911525, 'number': 809} | {'precision': 0.32575757575757575, 'recall': 0.36134453781512604, 'f1': 0.3426294820717131, 'number': 119} | {'precision': 0.771806167400881, 'recall': 0.8225352112676056, 'f1': 0.7963636363636363, 'number': 1065} | 0.7183 | 0.7842 | 0.7498 | 0.8054 |
|
71 |
+
| 0.2423 | 15.0 | 150 | 0.7080 | {'precision': 0.7122381477398015, 'recall': 0.7985166872682324, 'f1': 0.752913752913753, 'number': 809} | {'precision': 0.3359375, 'recall': 0.36134453781512604, 'f1': 0.3481781376518218, 'number': 119} | {'precision': 0.7817531305903399, 'recall': 0.8206572769953052, 'f1': 0.8007329363261567, 'number': 1065} | 0.7260 | 0.7842 | 0.7540 | 0.8073 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.34.1
|
77 |
+
- Pytorch 2.1.0+cu118
|
78 |
+
- Datasets 2.14.6
|
79 |
+
- Tokenizers 0.14.1
|
preprocessor_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"apply_ocr": true,
|
3 |
+
"do_resize": true,
|
4 |
+
"feature_extractor_type": "LayoutLMv2FeatureExtractor",
|
5 |
+
"image_processor_type": "LayoutLMv2ImageProcessor",
|
6 |
+
"ocr_lang": null,
|
7 |
+
"processor_class": "LayoutLMv2Processor",
|
8 |
+
"resample": 2,
|
9 |
+
"size": {
|
10 |
+
"height": 224,
|
11 |
+
"width": 224
|
12 |
+
},
|
13 |
+
"tesseract_config": ""
|
14 |
+
}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450604414
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb511165d82e51218ca1d884dbb3daa5db074d330b5f337e44dfd44176fd2519
|
3 |
size 450604414
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"additional_special_tokens": [],
|
45 |
+
"apply_ocr": false,
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "[CLS]",
|
48 |
+
"cls_token_box": [
|
49 |
+
0,
|
50 |
+
0,
|
51 |
+
0,
|
52 |
+
0
|
53 |
+
],
|
54 |
+
"do_basic_tokenize": true,
|
55 |
+
"do_lower_case": true,
|
56 |
+
"mask_token": "[MASK]",
|
57 |
+
"model_max_length": 512,
|
58 |
+
"never_split": null,
|
59 |
+
"only_label_first_subword": true,
|
60 |
+
"pad_token": "[PAD]",
|
61 |
+
"pad_token_box": [
|
62 |
+
0,
|
63 |
+
0,
|
64 |
+
0,
|
65 |
+
0
|
66 |
+
],
|
67 |
+
"pad_token_label": -100,
|
68 |
+
"processor_class": "LayoutLMv2Processor",
|
69 |
+
"sep_token": "[SEP]",
|
70 |
+
"sep_token_box": [
|
71 |
+
1000,
|
72 |
+
1000,
|
73 |
+
1000,
|
74 |
+
1000
|
75 |
+
],
|
76 |
+
"strip_accents": null,
|
77 |
+
"tokenize_chinese_chars": true,
|
78 |
+
"tokenizer_class": "LayoutLMv2Tokenizer",
|
79 |
+
"unk_token": "[UNK]"
|
80 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|