--- datasets: - imagenet-1k library_name: timm tags: - image-classification - timm - rdnet license: bsd-3-clause --- # Model card for rdnet_large.nv_in1k A RDNet image classification model. Trained on ImageNet-1k, original torchvision weights. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Imagenet-1k validation top-1 accuracy: 84.8% - Params (M): 186 - GMACs: 34.7 - Image size: 224 x 224 - **Papers:** - DenseNets Reloaded: Paradigm Shift Beyond ResNets and ViTs: https://arxiv.org/abs/2403.19588 - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm import torch img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('rdnet_large.nv_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'rdnet_large.nv_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 528, 56, 56]) # torch.Size([1, 840, 28, 28]) # torch.Size([1, 1528, 14, 14]) # torch.Size([1, 2000, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'rdnet_large.nv_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 2000, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ### Citation ``` @misc{kim2024densenets, title={DenseNets Reloaded: Paradigm Shift Beyond ResNets and ViTs}, author={Donghyun Kim and Byeongho Heo and Dongyoon Han}, year={2024}, eprint={2403.19588}, archivePrefix={arXiv}, } ```