Beom0 commited on
Commit
b7f94fa
β€’
1 Parent(s): c4a1416

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -3
README.md CHANGED
@@ -1,3 +1,75 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ language:
4
+ - en
5
+ pipeline_tag: image-segmentation
6
+ library_name: zim-anything
7
+ tags:
8
+ - matting
9
+ - segmentation
10
+ - segment anything
11
+ - zero-shot matting
12
+ ---
13
+
14
+ # ZIM-Anything-ViTL
15
+
16
+ ## Introduction
17
+
18
+ πŸš€ Introducing ZIM: Zero-Shot Image Matting – A Step Beyond SAM! πŸš€
19
+
20
+ While SAM (Segment Anything Model) has redefined zero-shot segmentation with broad applications across multiple fields, it often falls short in delivering high-precision, fine-grained masks. That’s where ZIM comes in.
21
+
22
+ 🌟 What is ZIM? 🌟
23
+
24
+ ZIM (Zero-Shot Image Matting) is a groundbreaking model developed to set a new standard in precision matting while maintaining strong zero-shot capabilities. Like SAM, ZIM can generalize across diverse datasets and objects in a zero-shot paradigm. But ZIM goes beyond, delivering highly accurate, fine-grained masks that capture intricate details.
25
+
26
+ πŸ” Get Started with ZIM πŸ”
27
+
28
+ Ready to elevate your AI projects with unmatched matting quality? Access ZIM on our project page: https://naver-ai.github.io/ZIM/
29
+
30
+ ## Installation
31
+
32
+ ```bash
33
+ pip install zim_anything
34
+ ```
35
+
36
+ or
37
+
38
+ ```bash
39
+ git clone https://github.com/naver-ai/ZIM.git
40
+ cd ZIM; pip install -e .
41
+ ```
42
+
43
+
44
+ ## Usage
45
+
46
+ 1. Make the directory `zim_vit_l_2092`.
47
+ 2. Download the [encoder](https://huggingface.co/naver-iv/zim-anything-vitl/resolve/main/zim_vit_l_2092/encoder.onnx?download=true) weight and [decoder](https://huggingface.co/naver-iv/zim-anything-vitl/resolve/main/zim_vit_l_2092/decoder.onnx?download=true) weight.
48
+ 3. Put them under the `zim_vit_b_2092` directory.
49
+
50
+ ```python
51
+ from zim_anything import zim_model_registry, ZimPredictor
52
+
53
+ backbone = "vit_l"
54
+ ckpt_p = "zim_vit_l_2092"
55
+
56
+ model = zim_model_registry[backbone](checkpoint=ckpt_p)
57
+ if torch.cuda.is_available():
58
+ model.cuda()
59
+
60
+ predictor = ZimPredictor(model)
61
+ predictor.set_image(<image>)
62
+ masks, _, _ = predictor.predict(<input_prompts>)
63
+ ```
64
+
65
+ ## Citation
66
+
67
+ If you find this project useful, please consider citing:
68
+
69
+ ```bibtex
70
+ @article{kim2024zim,
71
+ title={ZIM: Zero-Shot Image Matting for Anything},
72
+ author={Kim, Beomyoung and Shin, Chanyong and Jeong, Joonhyun and Jung, Hyungsik and Lee, Se-Yun and Chun, Sewhan and Hwang, Dong-Hyun and Yu, Joonsang},
73
+ journal={arXiv preprint arXiv:2411.00626},
74
+ year={2024}
75
+ }