File size: 12,845 Bytes
ebcafcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
---
base_model: BAAI/bge-large-en-v1.5
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: I don't want to handle any filtering tasks.
- text: Show me all customers who have the last name 'Doe'.
- text: What tables are available for data analysis in starhub_data_asset?
- text: what do you think it is?
- text: Provide data_asset_001_pcc product category details.
inference: true
model-index:
- name: SetFit with BAAI/bge-large-en-v1.5
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.9818181818181818
      name: Accuracy
---

# SetFit with BAAI/bge-large-en-v1.5

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 7 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label        | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|:-------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aggregation  | <ul><li>'Show me median Intangible Assets'</li><li>'Can I have sum Cost_Entertainment?'</li><li>'Get me min RevenueVariance_Actual_vs_Forecast.'</li></ul>                                                                                                                                                                                                                                                                                          |
| Lookup_1     | <ul><li>'Show me data_asset_kpi_cf details.'</li><li>'Retrieve data_asset_kpi_cf details.'</li><li>'Show M&A deal size by sector.'</li></ul>                                                                                                                                                                                                                                                                                                        |
| Viewtables   | <ul><li>'What tables are included in the starhub_data_asset database that are required for performing a basic data analysis?'</li><li>'What is the full list of tables available for use in queries within the starhub_data_asset database?'</li><li>'What are the table names within the starhub_data_asset database that enable data analysis of customer feedback?'</li></ul>                                                                    |
| Tablejoin    | <ul><li>'Is it possible to merge the Employees and Orders tables to see which employee handled each order?'</li><li>'Join data_asset_001_ta with data_asset_kpi_cf.'</li><li>'How can I connect the Customers and Orders tables to find customers who made purchases during a specific promotion?'</li></ul>                                                                                                                                        |
| Lookup       | <ul><li>'Filter by customers who have placed more than 3 orders and get me their email addresses.'</li><li>"Filter by customers in the city 'New York' and show me their phone numbers."</li><li>"Can you filter by employees who work in the 'Research' department?"</li></ul>                                                                                                                                                                     |
| Generalreply | <ul><li>"Oh, I just stepped outside and it's actually quite lovely! The sun is shining and there's a light breeze. How about you?"</li><li>"One of my short-term goals is to learn a new skill, like coding or cooking. I also want to save up enough money for a weekend trip with friends. How about you, any short-term goals you're working towards?"</li><li>'Hey! My day is going pretty well, thanks for asking. How about yours?'</li></ul> |
| Rejection    | <ul><li>'I have no interest in generating more data.'</li><li>"I don't want to engage in filtering operations."</li><li>"I'd rather not filter this dataset."</li></ul>                                                                                                                                                                                                                                                                             |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.9818   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("nazhan/bge-large-en-v1.5-brahmaputra-iter-10-4th")
# Run inference
preds = model("what do you think it is?")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 1   | 8.7137 | 62  |

| Label        | Training Sample Count |
|:-------------|:----------------------|
| Tablejoin    | 128                   |
| Rejection    | 73                    |
| Aggregation  | 222                   |
| Lookup       | 55                    |
| Generalreply | 75                    |
| Viewtables   | 76                    |
| Lookup_1     | 157                   |

### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: 2450
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True

### Training Results
| Epoch      | Step     | Training Loss | Validation Loss |
|:----------:|:--------:|:-------------:|:---------------:|
| 0.0000     | 1        | 0.2001        | -               |
| 0.0022     | 50       | 0.1566        | -               |
| 0.0045     | 100      | 0.0816        | -               |
| 0.0067     | 150      | 0.0733        | -               |
| 0.0089     | 200      | 0.0075        | -               |
| 0.0112     | 250      | 0.0059        | -               |
| 0.0134     | 300      | 0.0035        | -               |
| 0.0156     | 350      | 0.0034        | -               |
| 0.0179     | 400      | 0.0019        | -               |
| 0.0201     | 450      | 0.0015        | -               |
| 0.0223     | 500      | 0.0021        | -               |
| 0.0246     | 550      | 0.003         | -               |
| 0.0268     | 600      | 0.0021        | -               |
| 0.0290     | 650      | 0.0011        | -               |
| 0.0313     | 700      | 0.0015        | -               |
| 0.0335     | 750      | 0.0011        | -               |
| 0.0357     | 800      | 0.001         | -               |
| 0.0380     | 850      | 0.001         | -               |
| 0.0402     | 900      | 0.0012        | -               |
| 0.0424     | 950      | 0.0012        | -               |
| 0.0447     | 1000     | 0.0011        | -               |
| 0.0469     | 1050     | 0.0008        | -               |
| 0.0491     | 1100     | 0.0009        | -               |
| 0.0514     | 1150     | 0.001         | -               |
| 0.0536     | 1200     | 0.0008        | -               |
| 0.0558     | 1250     | 0.0011        | -               |
| 0.0581     | 1300     | 0.0009        | -               |
| 0.0603     | 1350     | 0.001         | -               |
| 0.0625     | 1400     | 0.0007        | -               |
| 0.0647     | 1450     | 0.0008        | -               |
| 0.0670     | 1500     | 0.0007        | -               |
| 0.0692     | 1550     | 0.001         | -               |
| 0.0714     | 1600     | 0.0007        | -               |
| 0.0737     | 1650     | 0.0007        | -               |
| 0.0759     | 1700     | 0.0006        | -               |
| 0.0781     | 1750     | 0.0008        | -               |
| 0.0804     | 1800     | 0.0006        | -               |
| 0.0826     | 1850     | 0.0005        | -               |
| 0.0848     | 1900     | 0.0006        | -               |
| 0.0871     | 1950     | 0.0005        | -               |
| 0.0893     | 2000     | 0.0007        | -               |
| 0.0915     | 2050     | 0.0005        | -               |
| 0.0938     | 2100     | 0.0006        | -               |
| 0.0960     | 2150     | 0.0007        | -               |
| 0.0982     | 2200     | 0.0005        | -               |
| 0.1005     | 2250     | 0.0008        | -               |
| 0.1027     | 2300     | 0.0005        | -               |
| 0.1049     | 2350     | 0.0008        | -               |
| 0.1072     | 2400     | 0.0007        | -               |
| **0.1094** | **2450** | **0.0007**    | **0.0094**      |

* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.11.9
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Datasets: 2.21.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->