Add SetFit model
Browse files- 1_Pooling/config.json +10 -0
- README.md +920 -0
- config.json +32 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +12 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,920 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: BAAI/bge-large-en-v1.5
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: Get me var Product_Profitability.
|
14 |
+
- text: What’s the best way to merge the Orders and Employees tables to identify the
|
15 |
+
top-performing departments?
|
16 |
+
- text: Please show min Total Company Revenue.
|
17 |
+
- text: Get me avg Intangible Assets.
|
18 |
+
- text: Can I join the Customers and Orders tables to find out which customers have
|
19 |
+
the highest lifetime value?
|
20 |
+
inference: true
|
21 |
+
model-index:
|
22 |
+
- name: SetFit with BAAI/bge-large-en-v1.5
|
23 |
+
results:
|
24 |
+
- task:
|
25 |
+
type: text-classification
|
26 |
+
name: Text Classification
|
27 |
+
dataset:
|
28 |
+
name: Unknown
|
29 |
+
type: unknown
|
30 |
+
split: test
|
31 |
+
metrics:
|
32 |
+
- type: accuracy
|
33 |
+
value: 0.5726495726495726
|
34 |
+
name: Accuracy
|
35 |
+
---
|
36 |
+
|
37 |
+
# SetFit with BAAI/bge-large-en-v1.5
|
38 |
+
|
39 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
40 |
+
|
41 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
42 |
+
|
43 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
44 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
45 |
+
|
46 |
+
## Model Details
|
47 |
+
|
48 |
+
### Model Description
|
49 |
+
- **Model Type:** SetFit
|
50 |
+
- **Sentence Transformer body:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5)
|
51 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
52 |
+
- **Maximum Sequence Length:** 512 tokens
|
53 |
+
- **Number of Classes:** 7 classes
|
54 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
55 |
+
<!-- - **Language:** Unknown -->
|
56 |
+
<!-- - **License:** Unknown -->
|
57 |
+
|
58 |
+
### Model Sources
|
59 |
+
|
60 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
61 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
62 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
63 |
+
|
64 |
+
### Model Labels
|
65 |
+
| Label | Examples |
|
66 |
+
|:-------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
67 |
+
| Generalreply | <ul><li>'How was your day today?'</li><li>'Oh, I have a lot of hobbies actually! But if I had to pick one, I would say that my favorite is probably reading. I love getting lost in a good book and discovering new worlds and characters. How about you?'</li><li>'Honestly, I hope to achieve a lot in the next 5 years. I want to continue growing in my career and learn new skills. I also aspire to travel more and experience different cultures. Overall, my goal is to be happy and fulfilled in both my personal and professional life. How about you? What are your hopes for the next 5 years?'</li></ul> |
|
68 |
+
| Lookup_1 | <ul><li>'i want to get trend analysis and group by product'</li><li>'Show me data_asset_001_pcc details.'</li><li>'Analyze Product-wise EBIT Margin Trend.'</li></ul> |
|
69 |
+
| Tablejoin | <ul><li>'Join data_asset_001_kpm with data_asset_kpi_is.'</li><li>'Can I merge cash flow and key performance metrics tables?'</li><li>'Join product category comparison and trend analysis tables.'</li></ul> |
|
70 |
+
| Rejection | <ul><li>"I'm not interested in filtering this collection."</li><li>"I don't want to create any new data outputs."</li><li>"I don't want to perform any filtering."</li></ul> |
|
71 |
+
| Aggregation | <ul><li>'Can I have avg Cost_Broadband?'</li><li>'Please show min % YoY Change.'</li><li>'Get me avg Earning_per_Cost.'</li></ul> |
|
72 |
+
| Viewtables | <ul><li>'What tables are included in the starhub_data_asset database that relate to customer complaints?'</li><li>'I need to see a list of tables that contain information about network outages.'</li><li>'What are the available tables in the starhub_data_asset database that are relevant to financial reporting?'</li></ul> |
|
73 |
+
| Lookup | <ul><li>'Filter by orders placed by customer ID 102 and get me the order dates.'</li><li>'Show me the orders placed on January 1st, 2024.'</li><li>"Get me the phone number of the customer with the first name 'Alice'."</li></ul> |
|
74 |
+
|
75 |
+
## Evaluation
|
76 |
+
|
77 |
+
### Metrics
|
78 |
+
| Label | Accuracy |
|
79 |
+
|:--------|:---------|
|
80 |
+
| **all** | 0.5726 |
|
81 |
+
|
82 |
+
## Uses
|
83 |
+
|
84 |
+
### Direct Use for Inference
|
85 |
+
|
86 |
+
First install the SetFit library:
|
87 |
+
|
88 |
+
```bash
|
89 |
+
pip install setfit
|
90 |
+
```
|
91 |
+
|
92 |
+
Then you can load this model and run inference.
|
93 |
+
|
94 |
+
```python
|
95 |
+
from setfit import SetFitModel
|
96 |
+
|
97 |
+
# Download from the 🤗 Hub
|
98 |
+
model = SetFitModel.from_pretrained("nazhan/bge-large-en-v1.5-brahmaputra-iter-9-1-epoch")
|
99 |
+
# Run inference
|
100 |
+
preds = model("Get me avg Intangible Assets.")
|
101 |
+
```
|
102 |
+
|
103 |
+
<!--
|
104 |
+
### Downstream Use
|
105 |
+
|
106 |
+
*List how someone could finetune this model on their own dataset.*
|
107 |
+
-->
|
108 |
+
|
109 |
+
<!--
|
110 |
+
### Out-of-Scope Use
|
111 |
+
|
112 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
113 |
+
-->
|
114 |
+
|
115 |
+
<!--
|
116 |
+
## Bias, Risks and Limitations
|
117 |
+
|
118 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
119 |
+
-->
|
120 |
+
|
121 |
+
<!--
|
122 |
+
### Recommendations
|
123 |
+
|
124 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
125 |
+
-->
|
126 |
+
|
127 |
+
## Training Details
|
128 |
+
|
129 |
+
### Training Set Metrics
|
130 |
+
| Training set | Min | Median | Max |
|
131 |
+
|:-------------|:----|:-------|:----|
|
132 |
+
| Word count | 2 | 8.7792 | 62 |
|
133 |
+
|
134 |
+
| Label | Training Sample Count |
|
135 |
+
|:-------------|:----------------------|
|
136 |
+
| Tablejoin | 126 |
|
137 |
+
| Rejection | 72 |
|
138 |
+
| Aggregation | 221 |
|
139 |
+
| Lookup | 62 |
|
140 |
+
| Generalreply | 60 |
|
141 |
+
| Viewtables | 73 |
|
142 |
+
| Lookup_1 | 224 |
|
143 |
+
|
144 |
+
### Training Hyperparameters
|
145 |
+
- batch_size: (16, 16)
|
146 |
+
- num_epochs: (1, 1)
|
147 |
+
- max_steps: -1
|
148 |
+
- sampling_strategy: oversampling
|
149 |
+
- body_learning_rate: (2e-05, 1e-05)
|
150 |
+
- head_learning_rate: 0.01
|
151 |
+
- loss: CosineSimilarityLoss
|
152 |
+
- distance_metric: cosine_distance
|
153 |
+
- margin: 0.25
|
154 |
+
- end_to_end: False
|
155 |
+
- use_amp: False
|
156 |
+
- warmup_proportion: 0.1
|
157 |
+
- seed: 42
|
158 |
+
- eval_max_steps: -1
|
159 |
+
- load_best_model_at_end: True
|
160 |
+
|
161 |
+
### Training Results
|
162 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
163 |
+
|:-------:|:---------:|:-------------:|:---------------:|
|
164 |
+
| 0.0000 | 1 | 0.2059 | - |
|
165 |
+
| 0.0014 | 50 | 0.1956 | - |
|
166 |
+
| 0.0028 | 100 | 0.207 | - |
|
167 |
+
| 0.0042 | 150 | 0.1783 | - |
|
168 |
+
| 0.0056 | 200 | 0.1517 | - |
|
169 |
+
| 0.0070 | 250 | 0.1795 | - |
|
170 |
+
| 0.0084 | 300 | 0.1227 | - |
|
171 |
+
| 0.0098 | 350 | 0.063 | - |
|
172 |
+
| 0.0112 | 400 | 0.0451 | - |
|
173 |
+
| 0.0126 | 450 | 0.0408 | - |
|
174 |
+
| 0.0140 | 500 | 0.0576 | - |
|
175 |
+
| 0.0155 | 550 | 0.0178 | - |
|
176 |
+
| 0.0169 | 600 | 0.0244 | - |
|
177 |
+
| 0.0183 | 650 | 0.0072 | - |
|
178 |
+
| 0.0197 | 700 | 0.0223 | - |
|
179 |
+
| 0.0211 | 750 | 0.0046 | - |
|
180 |
+
| 0.0225 | 800 | 0.003 | - |
|
181 |
+
| 0.0239 | 850 | 0.004 | - |
|
182 |
+
| 0.0253 | 900 | 0.0042 | - |
|
183 |
+
| 0.0267 | 950 | 0.0047 | - |
|
184 |
+
| 0.0281 | 1000 | 0.0045 | - |
|
185 |
+
| 0.0295 | 1050 | 0.0032 | - |
|
186 |
+
| 0.0309 | 1100 | 0.0021 | - |
|
187 |
+
| 0.0323 | 1150 | 0.0028 | - |
|
188 |
+
| 0.0337 | 1200 | 0.0022 | - |
|
189 |
+
| 0.0351 | 1250 | 0.0024 | - |
|
190 |
+
| 0.0365 | 1300 | 0.0019 | - |
|
191 |
+
| 0.0379 | 1350 | 0.002 | - |
|
192 |
+
| 0.0393 | 1400 | 0.0015 | - |
|
193 |
+
| 0.0407 | 1450 | 0.0016 | - |
|
194 |
+
| 0.0421 | 1500 | 0.0014 | - |
|
195 |
+
| 0.0436 | 1550 | 0.0013 | - |
|
196 |
+
| 0.0450 | 1600 | 0.0016 | - |
|
197 |
+
| 0.0464 | 1650 | 0.0011 | - |
|
198 |
+
| 0.0478 | 1700 | 0.0012 | - |
|
199 |
+
| 0.0492 | 1750 | 0.0011 | - |
|
200 |
+
| 0.0506 | 1800 | 0.0015 | - |
|
201 |
+
| 0.0520 | 1850 | 0.0016 | - |
|
202 |
+
| 0.0534 | 1900 | 0.0012 | - |
|
203 |
+
| 0.0548 | 1950 | 0.0008 | - |
|
204 |
+
| 0.0562 | 2000 | 0.0011 | - |
|
205 |
+
| 0.0576 | 2050 | 0.001 | - |
|
206 |
+
| 0.0590 | 2100 | 0.001 | - |
|
207 |
+
| 0.0604 | 2150 | 0.0008 | - |
|
208 |
+
| 0.0618 | 2200 | 0.0009 | - |
|
209 |
+
| 0.0632 | 2250 | 0.0007 | - |
|
210 |
+
| 0.0646 | 2300 | 0.0008 | - |
|
211 |
+
| 0.0660 | 2350 | 0.0006 | - |
|
212 |
+
| 0.0674 | 2400 | 0.0007 | - |
|
213 |
+
| 0.0688 | 2450 | 0.0008 | - |
|
214 |
+
| 0.0702 | 2500 | 0.0006 | - |
|
215 |
+
| 0.0717 | 2550 | 0.0007 | - |
|
216 |
+
| 0.0731 | 2600 | 0.0006 | - |
|
217 |
+
| 0.0745 | 2650 | 0.0007 | - |
|
218 |
+
| 0.0759 | 2700 | 0.0005 | - |
|
219 |
+
| 0.0773 | 2750 | 0.0006 | - |
|
220 |
+
| 0.0787 | 2800 | 0.0007 | - |
|
221 |
+
| 0.0801 | 2850 | 0.0007 | - |
|
222 |
+
| 0.0815 | 2900 | 0.0005 | - |
|
223 |
+
| 0.0829 | 2950 | 0.0008 | - |
|
224 |
+
| 0.0843 | 3000 | 0.0005 | - |
|
225 |
+
| 0.0857 | 3050 | 0.0007 | - |
|
226 |
+
| 0.0871 | 3100 | 0.0006 | - |
|
227 |
+
| 0.0885 | 3150 | 0.0005 | - |
|
228 |
+
| 0.0899 | 3200 | 0.0007 | - |
|
229 |
+
| 0.0913 | 3250 | 0.0005 | - |
|
230 |
+
| 0.0927 | 3300 | 0.0004 | - |
|
231 |
+
| 0.0941 | 3350 | 0.0005 | - |
|
232 |
+
| 0.0955 | 3400 | 0.0003 | - |
|
233 |
+
| 0.0969 | 3450 | 0.0004 | - |
|
234 |
+
| 0.0983 | 3500 | 0.0004 | - |
|
235 |
+
| 0.0998 | 3550 | 0.0004 | - |
|
236 |
+
| 0.1012 | 3600 | 0.0004 | - |
|
237 |
+
| 0.1026 | 3650 | 0.0004 | - |
|
238 |
+
| 0.1040 | 3700 | 0.0004 | - |
|
239 |
+
| 0.1054 | 3750 | 0.0004 | - |
|
240 |
+
| 0.1068 | 3800 | 0.0003 | - |
|
241 |
+
| 0.1082 | 3850 | 0.0003 | - |
|
242 |
+
| 0.1096 | 3900 | 0.0005 | - |
|
243 |
+
| 0.1110 | 3950 | 0.0005 | - |
|
244 |
+
| 0.1124 | 4000 | 0.0005 | - |
|
245 |
+
| 0.1138 | 4050 | 0.0003 | - |
|
246 |
+
| 0.1152 | 4100 | 0.0006 | - |
|
247 |
+
| 0.1166 | 4150 | 0.0004 | - |
|
248 |
+
| 0.1180 | 4200 | 0.0003 | - |
|
249 |
+
| 0.1194 | 4250 | 0.0004 | - |
|
250 |
+
| 0.1208 | 4300 | 0.0003 | - |
|
251 |
+
| 0.1222 | 4350 | 0.0004 | - |
|
252 |
+
| 0.1236 | 4400 | 0.0003 | - |
|
253 |
+
| 0.1250 | 4450 | 0.0003 | - |
|
254 |
+
| 0.1264 | 4500 | 0.0004 | - |
|
255 |
+
| 0.1279 | 4550 | 0.0003 | - |
|
256 |
+
| 0.1293 | 4600 | 0.0005 | - |
|
257 |
+
| 0.1307 | 4650 | 0.0004 | - |
|
258 |
+
| 0.1321 | 4700 | 0.0003 | - |
|
259 |
+
| 0.1335 | 4750 | 0.0004 | - |
|
260 |
+
| 0.1349 | 4800 | 0.0003 | - |
|
261 |
+
| 0.1363 | 4850 | 0.0003 | - |
|
262 |
+
| 0.1377 | 4900 | 0.0003 | - |
|
263 |
+
| 0.1391 | 4950 | 0.0003 | - |
|
264 |
+
| 0.1405 | 5000 | 0.0003 | - |
|
265 |
+
| 0.1419 | 5050 | 0.0003 | - |
|
266 |
+
| 0.1433 | 5100 | 0.0004 | - |
|
267 |
+
| 0.1447 | 5150 | 0.0003 | - |
|
268 |
+
| 0.1461 | 5200 | 0.0004 | - |
|
269 |
+
| 0.1475 | 5250 | 0.0004 | - |
|
270 |
+
| 0.1489 | 5300 | 0.0003 | - |
|
271 |
+
| 0.1503 | 5350 | 0.0003 | - |
|
272 |
+
| 0.1517 | 5400 | 0.0003 | - |
|
273 |
+
| 0.1531 | 5450 | 0.0003 | - |
|
274 |
+
| 0.1545 | 5500 | 0.0002 | - |
|
275 |
+
| 0.1560 | 5550 | 0.0003 | - |
|
276 |
+
| 0.1574 | 5600 | 0.0003 | - |
|
277 |
+
| 0.1588 | 5650 | 0.0003 | - |
|
278 |
+
| 0.1602 | 5700 | 0.0002 | - |
|
279 |
+
| 0.1616 | 5750 | 0.0002 | - |
|
280 |
+
| 0.1630 | 5800 | 0.0003 | - |
|
281 |
+
| 0.1644 | 5850 | 0.0002 | - |
|
282 |
+
| 0.1658 | 5900 | 0.0003 | - |
|
283 |
+
| 0.1672 | 5950 | 0.0002 | - |
|
284 |
+
| 0.1686 | 6000 | 0.0002 | - |
|
285 |
+
| 0.1700 | 6050 | 0.0002 | - |
|
286 |
+
| 0.1714 | 6100 | 0.0002 | - |
|
287 |
+
| 0.1728 | 6150 | 0.0003 | - |
|
288 |
+
| 0.1742 | 6200 | 0.0003 | - |
|
289 |
+
| 0.1756 | 6250 | 0.0003 | - |
|
290 |
+
| 0.1770 | 6300 | 0.0003 | - |
|
291 |
+
| 0.1784 | 6350 | 0.0002 | - |
|
292 |
+
| 0.1798 | 6400 | 0.0003 | - |
|
293 |
+
| 0.1812 | 6450 | 0.0002 | - |
|
294 |
+
| 0.1826 | 6500 | 0.0003 | - |
|
295 |
+
| 0.1841 | 6550 | 0.0002 | - |
|
296 |
+
| 0.1855 | 6600 | 0.0002 | - |
|
297 |
+
| 0.1869 | 6650 | 0.0002 | - |
|
298 |
+
| 0.1883 | 6700 | 0.0002 | - |
|
299 |
+
| 0.1897 | 6750 | 0.0003 | - |
|
300 |
+
| 0.1911 | 6800 | 0.0003 | - |
|
301 |
+
| 0.1925 | 6850 | 0.0002 | - |
|
302 |
+
| 0.1939 | 6900 | 0.0002 | - |
|
303 |
+
| 0.1953 | 6950 | 0.0002 | - |
|
304 |
+
| 0.1967 | 7000 | 0.0002 | - |
|
305 |
+
| 0.1981 | 7050 | 0.0001 | - |
|
306 |
+
| 0.1995 | 7100 | 0.0002 | - |
|
307 |
+
| 0.2009 | 7150 | 0.0002 | - |
|
308 |
+
| 0.2023 | 7200 | 0.0002 | - |
|
309 |
+
| 0.2037 | 7250 | 0.0002 | - |
|
310 |
+
| 0.2051 | 7300 | 0.0002 | - |
|
311 |
+
| 0.2065 | 7350 | 0.0001 | - |
|
312 |
+
| 0.2079 | 7400 | 0.0002 | - |
|
313 |
+
| 0.2093 | 7450 | 0.0024 | - |
|
314 |
+
| 0.2107 | 7500 | 0.0718 | - |
|
315 |
+
| 0.2122 | 7550 | 0.1 | - |
|
316 |
+
| 0.2136 | 7600 | 0.1876 | - |
|
317 |
+
| 0.2150 | 7650 | 0.1006 | - |
|
318 |
+
| 0.2164 | 7700 | 0.163 | - |
|
319 |
+
| 0.2178 | 7750 | 0.1008 | - |
|
320 |
+
| 0.2192 | 7800 | 0.1073 | - |
|
321 |
+
| 0.2206 | 7850 | 0.2059 | - |
|
322 |
+
| 0.2220 | 7900 | 0.112 | - |
|
323 |
+
| 0.2234 | 7950 | 0.1103 | - |
|
324 |
+
| 0.2248 | 8000 | 0.1921 | - |
|
325 |
+
| 0.2262 | 8050 | 0.0641 | - |
|
326 |
+
| 0.2276 | 8100 | 0.0992 | - |
|
327 |
+
| 0.2290 | 8150 | 0.2486 | - |
|
328 |
+
| 0.2304 | 8200 | 0.1716 | - |
|
329 |
+
| 0.2318 | 8250 | 0.142 | - |
|
330 |
+
| 0.2332 | 8300 | 0.1431 | - |
|
331 |
+
| 0.2346 | 8350 | 0.1774 | - |
|
332 |
+
| 0.2360 | 8400 | 0.1537 | - |
|
333 |
+
| 0.2374 | 8450 | 0.1902 | - |
|
334 |
+
| 0.2388 | 8500 | 0.1015 | - |
|
335 |
+
| 0.2402 | 8550 | 0.1401 | - |
|
336 |
+
| 0.2417 | 8600 | 0.2599 | - |
|
337 |
+
| 0.2431 | 8650 | 0.261 | - |
|
338 |
+
| 0.2445 | 8700 | 0.1861 | - |
|
339 |
+
| 0.2459 | 8750 | 0.1743 | - |
|
340 |
+
| 0.2473 | 8800 | 0.1705 | - |
|
341 |
+
| 0.2487 | 8850 | 0.1752 | - |
|
342 |
+
| 0.2501 | 8900 | 0.0914 | - |
|
343 |
+
| 0.2515 | 8950 | 0.1651 | - |
|
344 |
+
| 0.2529 | 9000 | 0.1165 | - |
|
345 |
+
| 0.2543 | 9050 | 0.2675 | - |
|
346 |
+
| 0.2557 | 9100 | 0.0953 | - |
|
347 |
+
| 0.2571 | 9150 | 0.0713 | - |
|
348 |
+
| 0.2585 | 9200 | 0.1782 | - |
|
349 |
+
| 0.2599 | 9250 | 0.1995 | - |
|
350 |
+
| 0.2613 | 9300 | 0.2393 | - |
|
351 |
+
| 0.2627 | 9350 | 0.1734 | - |
|
352 |
+
| 0.2641 | 9400 | 0.2222 | - |
|
353 |
+
| 0.2655 | 9450 | 0.3005 | - |
|
354 |
+
| 0.2669 | 9500 | 0.2252 | - |
|
355 |
+
| 0.2683 | 9550 | 0.2498 | - |
|
356 |
+
| 0.2698 | 9600 | 0.3293 | - |
|
357 |
+
| 0.2712 | 9650 | 0.2422 | - |
|
358 |
+
| 0.2726 | 9700 | 0.1943 | - |
|
359 |
+
| 0.2740 | 9750 | 0.2497 | - |
|
360 |
+
| 0.2754 | 9800 | 0.2538 | - |
|
361 |
+
| 0.2768 | 9850 | 0.2114 | - |
|
362 |
+
| 0.2782 | 9900 | 0.1719 | - |
|
363 |
+
| 0.2796 | 9950 | 0.2453 | - |
|
364 |
+
| 0.2810 | 10000 | 0.2571 | - |
|
365 |
+
| 0.2824 | 10050 | 0.2267 | - |
|
366 |
+
| 0.2838 | 10100 | 0.2274 | - |
|
367 |
+
| 0.2852 | 10150 | 0.2441 | - |
|
368 |
+
| 0.2866 | 10200 | 0.2536 | - |
|
369 |
+
| 0.2880 | 10250 | 0.236 | - |
|
370 |
+
| 0.2894 | 10300 | 0.204 | - |
|
371 |
+
| 0.2908 | 10350 | 0.2636 | - |
|
372 |
+
| 0.2922 | 10400 | 0.2562 | - |
|
373 |
+
| 0.2936 | 10450 | 0.2437 | - |
|
374 |
+
| 0.2950 | 10500 | 0.2395 | - |
|
375 |
+
| 0.2964 | 10550 | 0.2616 | - |
|
376 |
+
| 0.2979 | 10600 | 0.272 | - |
|
377 |
+
| 0.2993 | 10650 | 0.2637 | - |
|
378 |
+
| 0.3007 | 10700 | 0.2503 | - |
|
379 |
+
| 0.3021 | 10750 | 0.2401 | - |
|
380 |
+
| 0.3035 | 10800 | 0.2485 | - |
|
381 |
+
| 0.3049 | 10850 | 0.2521 | - |
|
382 |
+
| 0.3063 | 10900 | 0.256 | - |
|
383 |
+
| 0.3077 | 10950 | 0.2363 | - |
|
384 |
+
| 0.3091 | 11000 | 0.2482 | - |
|
385 |
+
| 0.3105 | 11050 | 0.2533 | - |
|
386 |
+
| 0.3119 | 11100 | 0.2598 | - |
|
387 |
+
| 0.3133 | 11150 | 0.2572 | - |
|
388 |
+
| 0.3147 | 11200 | 0.2631 | - |
|
389 |
+
| 0.3161 | 11250 | 0.2399 | - |
|
390 |
+
| 0.3175 | 11300 | 0.2509 | - |
|
391 |
+
| 0.3189 | 11350 | 0.2447 | - |
|
392 |
+
| 0.3203 | 11400 | 0.2395 | - |
|
393 |
+
| 0.3217 | 11450 | 0.2439 | - |
|
394 |
+
| 0.3231 | 11500 | 0.2497 | - |
|
395 |
+
| 0.3245 | 11550 | 0.2377 | - |
|
396 |
+
| 0.3260 | 11600 | 0.2452 | - |
|
397 |
+
| 0.3274 | 11650 | 0.2361 | - |
|
398 |
+
| 0.3288 | 11700 | 0.2431 | - |
|
399 |
+
| 0.3302 | 11750 | 0.2462 | - |
|
400 |
+
| 0.3316 | 11800 | 0.2438 | - |
|
401 |
+
| 0.3330 | 11850 | 0.2498 | - |
|
402 |
+
| 0.3344 | 11900 | 0.262 | - |
|
403 |
+
| 0.3358 | 11950 | 0.2451 | - |
|
404 |
+
| 0.3372 | 12000 | 0.251 | - |
|
405 |
+
| 0.3386 | 12050 | 0.2605 | - |
|
406 |
+
| 0.3400 | 12100 | 0.2477 | - |
|
407 |
+
| 0.3414 | 12150 | 0.2417 | - |
|
408 |
+
| 0.3428 | 12200 | 0.2566 | - |
|
409 |
+
| 0.3442 | 12250 | 0.2373 | - |
|
410 |
+
| 0.3456 | 12300 | 0.2444 | - |
|
411 |
+
| 0.3470 | 12350 | 0.2589 | - |
|
412 |
+
| 0.3484 | 12400 | 0.2491 | - |
|
413 |
+
| 0.3498 | 12450 | 0.2438 | - |
|
414 |
+
| 0.3512 | 12500 | 0.2519 | - |
|
415 |
+
| 0.3526 | 12550 | 0.2406 | - |
|
416 |
+
| 0.3541 | 12600 | 0.2472 | - |
|
417 |
+
| 0.3555 | 12650 | 0.2447 | - |
|
418 |
+
| 0.3569 | 12700 | 0.2677 | - |
|
419 |
+
| 0.3583 | 12750 | 0.2486 | - |
|
420 |
+
| 0.3597 | 12800 | 0.2585 | - |
|
421 |
+
| 0.3611 | 12850 | 0.2539 | - |
|
422 |
+
| 0.3625 | 12900 | 0.2556 | - |
|
423 |
+
| 0.3639 | 12950 | 0.2653 | - |
|
424 |
+
| 0.3653 | 13000 | 0.2583 | - |
|
425 |
+
| 0.3667 | 13050 | 0.2308 | - |
|
426 |
+
| 0.3681 | 13100 | 0.2586 | - |
|
427 |
+
| 0.3695 | 13150 | 0.2384 | - |
|
428 |
+
| 0.3709 | 13200 | 0.2645 | - |
|
429 |
+
| 0.3723 | 13250 | 0.2394 | - |
|
430 |
+
| 0.3737 | 13300 | 0.2575 | - |
|
431 |
+
| 0.3751 | 13350 | 0.2418 | - |
|
432 |
+
| 0.3765 | 13400 | 0.2414 | - |
|
433 |
+
| 0.3779 | 13450 | 0.2516 | - |
|
434 |
+
| 0.3793 | 13500 | 0.2571 | - |
|
435 |
+
| 0.3807 | 13550 | 0.2352 | - |
|
436 |
+
| 0.3822 | 13600 | 0.2584 | - |
|
437 |
+
| 0.3836 | 13650 | 0.2561 | - |
|
438 |
+
| 0.3850 | 13700 | 0.2672 | - |
|
439 |
+
| 0.3864 | 13750 | 0.2574 | - |
|
440 |
+
| 0.3878 | 13800 | 0.2398 | - |
|
441 |
+
| 0.3892 | 13850 | 0.2359 | - |
|
442 |
+
| 0.3906 | 13900 | 0.2397 | - |
|
443 |
+
| 0.3920 | 13950 | 0.2582 | - |
|
444 |
+
| 0.3934 | 14000 | 0.2468 | - |
|
445 |
+
| 0.3948 | 14050 | 0.2702 | - |
|
446 |
+
| 0.3962 | 14100 | 0.2547 | - |
|
447 |
+
| 0.3976 | 14150 | 0.2382 | - |
|
448 |
+
| 0.3990 | 14200 | 0.255 | - |
|
449 |
+
| 0.4004 | 14250 | 0.2382 | - |
|
450 |
+
| 0.4018 | 14300 | 0.2516 | - |
|
451 |
+
| 0.4032 | 14350 | 0.236 | - |
|
452 |
+
| 0.4046 | 14400 | 0.2499 | - |
|
453 |
+
| 0.4060 | 14450 | 0.2606 | - |
|
454 |
+
| 0.4074 | 14500 | 0.2514 | - |
|
455 |
+
| 0.4088 | 14550 | 0.2442 | - |
|
456 |
+
| 0.4103 | 14600 | 0.2516 | - |
|
457 |
+
| 0.4117 | 14650 | 0.2439 | - |
|
458 |
+
| 0.4131 | 14700 | 0.2547 | - |
|
459 |
+
| 0.4145 | 14750 | 0.2522 | - |
|
460 |
+
| 0.4159 | 14800 | 0.2421 | - |
|
461 |
+
| 0.4173 | 14850 | 0.2461 | - |
|
462 |
+
| 0.4187 | 14900 | 0.2663 | - |
|
463 |
+
| 0.4201 | 14950 | 0.259 | - |
|
464 |
+
| 0.4215 | 15000 | 0.2526 | - |
|
465 |
+
| 0.4229 | 15050 | 0.2527 | - |
|
466 |
+
| 0.4243 | 15100 | 0.2547 | - |
|
467 |
+
| 0.4257 | 15150 | 0.2696 | - |
|
468 |
+
| 0.4271 | 15200 | 0.2399 | - |
|
469 |
+
| 0.4285 | 15250 | 0.2557 | - |
|
470 |
+
| 0.4299 | 15300 | 0.2581 | - |
|
471 |
+
| 0.4313 | 15350 | 0.2402 | - |
|
472 |
+
| 0.4327 | 15400 | 0.2658 | - |
|
473 |
+
| 0.4341 | 15450 | 0.2491 | - |
|
474 |
+
| 0.4355 | 15500 | 0.2434 | - |
|
475 |
+
| 0.4369 | 15550 | 0.2511 | - |
|
476 |
+
| 0.4384 | 15600 | 0.2448 | - |
|
477 |
+
| 0.4398 | 15650 | 0.262 | - |
|
478 |
+
| 0.4412 | 15700 | 0.2549 | - |
|
479 |
+
| 0.4426 | 15750 | 0.2546 | - |
|
480 |
+
| 0.4440 | 15800 | 0.2444 | - |
|
481 |
+
| 0.4454 | 15850 | 0.2551 | - |
|
482 |
+
| 0.4468 | 15900 | 0.247 | - |
|
483 |
+
| 0.4482 | 15950 | 0.253 | - |
|
484 |
+
| 0.4496 | 16000 | 0.2615 | - |
|
485 |
+
| 0.4510 | 16050 | 0.2514 | - |
|
486 |
+
| 0.4524 | 16100 | 0.2587 | - |
|
487 |
+
| 0.4538 | 16150 | 0.2591 | - |
|
488 |
+
| 0.4552 | 16200 | 0.249 | - |
|
489 |
+
| 0.4566 | 16250 | 0.2459 | - |
|
490 |
+
| 0.4580 | 16300 | 0.2582 | - |
|
491 |
+
| 0.4594 | 16350 | 0.243 | - |
|
492 |
+
| 0.4608 | 16400 | 0.2493 | - |
|
493 |
+
| 0.4622 | 16450 | 0.2306 | - |
|
494 |
+
| 0.4636 | 16500 | 0.2561 | - |
|
495 |
+
| 0.4650 | 16550 | 0.2363 | - |
|
496 |
+
| 0.4664 | 16600 | 0.2412 | - |
|
497 |
+
| 0.4679 | 16650 | 0.2454 | - |
|
498 |
+
| 0.4693 | 16700 | 0.2575 | - |
|
499 |
+
| 0.4707 | 16750 | 0.2369 | - |
|
500 |
+
| 0.4721 | 16800 | 0.245 | - |
|
501 |
+
| 0.4735 | 16850 | 0.2591 | - |
|
502 |
+
| 0.4749 | 16900 | 0.2582 | - |
|
503 |
+
| 0.4763 | 16950 | 0.2629 | - |
|
504 |
+
| 0.4777 | 17000 | 0.2393 | - |
|
505 |
+
| 0.4791 | 17050 | 0.2563 | - |
|
506 |
+
| 0.4805 | 17100 | 0.2511 | - |
|
507 |
+
| 0.4819 | 17150 | 0.2538 | - |
|
508 |
+
| 0.4833 | 17200 | 0.2464 | - |
|
509 |
+
| 0.4847 | 17250 | 0.2511 | - |
|
510 |
+
| 0.4861 | 17300 | 0.244 | - |
|
511 |
+
| 0.4875 | 17350 | 0.2688 | - |
|
512 |
+
| 0.4889 | 17400 | 0.2729 | - |
|
513 |
+
| 0.4903 | 17450 | 0.2523 | - |
|
514 |
+
| 0.4917 | 17500 | 0.2507 | - |
|
515 |
+
| 0.4931 | 17550 | 0.2527 | - |
|
516 |
+
| 0.4945 | 17600 | 0.2478 | - |
|
517 |
+
| 0.4960 | 17650 | 0.26 | - |
|
518 |
+
| 0.4974 | 17700 | 0.2526 | - |
|
519 |
+
| 0.4988 | 17750 | 0.2549 | - |
|
520 |
+
| 0.5002 | 17800 | 0.2496 | - |
|
521 |
+
| 0.5016 | 17850 | 0.2537 | - |
|
522 |
+
| 0.5030 | 17900 | 0.2644 | - |
|
523 |
+
| 0.5044 | 17950 | 0.2633 | - |
|
524 |
+
| 0.5058 | 18000 | 0.2515 | - |
|
525 |
+
| 0.5072 | 18050 | 0.2551 | - |
|
526 |
+
| 0.5086 | 18100 | 0.2427 | - |
|
527 |
+
| 0.5100 | 18150 | 0.2615 | - |
|
528 |
+
| 0.5114 | 18200 | 0.2455 | - |
|
529 |
+
| 0.5128 | 18250 | 0.2615 | - |
|
530 |
+
| 0.5142 | 18300 | 0.2558 | - |
|
531 |
+
| 0.5156 | 18350 | 0.2483 | - |
|
532 |
+
| 0.5170 | 18400 | 0.2618 | - |
|
533 |
+
| 0.5184 | 18450 | 0.2404 | - |
|
534 |
+
| 0.5198 | 18500 | 0.2562 | - |
|
535 |
+
| 0.5212 | 18550 | 0.259 | - |
|
536 |
+
| 0.5226 | 18600 | 0.246 | - |
|
537 |
+
| 0.5241 | 18650 | 0.2529 | - |
|
538 |
+
| 0.5255 | 18700 | 0.2526 | - |
|
539 |
+
| 0.5269 | 18750 | 0.2381 | - |
|
540 |
+
| 0.5283 | 18800 | 0.2648 | - |
|
541 |
+
| 0.5297 | 18850 | 0.2628 | - |
|
542 |
+
| 0.5311 | 18900 | 0.2528 | - |
|
543 |
+
| 0.5325 | 18950 | 0.2447 | - |
|
544 |
+
| 0.5339 | 19000 | 0.2467 | - |
|
545 |
+
| 0.5353 | 19050 | 0.2487 | - |
|
546 |
+
| 0.5367 | 19100 | 0.2494 | - |
|
547 |
+
| 0.5381 | 19150 | 0.2441 | - |
|
548 |
+
| 0.5395 | 19200 | 0.2507 | - |
|
549 |
+
| 0.5409 | 19250 | 0.2494 | - |
|
550 |
+
| 0.5423 | 19300 | 0.2501 | - |
|
551 |
+
| 0.5437 | 19350 | 0.2586 | - |
|
552 |
+
| 0.5451 | 19400 | 0.2677 | - |
|
553 |
+
| 0.5465 | 19450 | 0.2558 | - |
|
554 |
+
| 0.5479 | 19500 | 0.2444 | - |
|
555 |
+
| 0.5493 | 19550 | 0.251 | - |
|
556 |
+
| 0.5507 | 19600 | 0.2545 | - |
|
557 |
+
| 0.5522 | 19650 | 0.2464 | - |
|
558 |
+
| 0.5536 | 19700 | 0.2565 | - |
|
559 |
+
| 0.5550 | 19750 | 0.2674 | - |
|
560 |
+
| 0.5564 | 19800 | 0.2483 | - |
|
561 |
+
| 0.5578 | 19850 | 0.241 | - |
|
562 |
+
| 0.5592 | 19900 | 0.2504 | - |
|
563 |
+
| 0.5606 | 19950 | 0.2655 | - |
|
564 |
+
| 0.5620 | 20000 | 0.2484 | - |
|
565 |
+
| 0.5634 | 20050 | 0.254 | - |
|
566 |
+
| 0.5648 | 20100 | 0.2482 | - |
|
567 |
+
| 0.5662 | 20150 | 0.2644 | - |
|
568 |
+
| 0.5676 | 20200 | 0.2694 | - |
|
569 |
+
| 0.5690 | 20250 | 0.258 | - |
|
570 |
+
| 0.5704 | 20300 | 0.2587 | - |
|
571 |
+
| 0.5718 | 20350 | 0.2571 | - |
|
572 |
+
| 0.5732 | 20400 | 0.2464 | - |
|
573 |
+
| 0.5746 | 20450 | 0.2531 | - |
|
574 |
+
| 0.5760 | 20500 | 0.2504 | - |
|
575 |
+
| 0.5774 | 20550 | 0.2551 | - |
|
576 |
+
| 0.5788 | 20600 | 0.253 | - |
|
577 |
+
| 0.5803 | 20650 | 0.2374 | - |
|
578 |
+
| 0.5817 | 20700 | 0.2405 | - |
|
579 |
+
| 0.5831 | 20750 | 0.2435 | - |
|
580 |
+
| 0.5845 | 20800 | 0.2569 | - |
|
581 |
+
| 0.5859 | 20850 | 0.2533 | - |
|
582 |
+
| 0.5873 | 20900 | 0.2508 | - |
|
583 |
+
| 0.5887 | 20950 | 0.2508 | - |
|
584 |
+
| 0.5901 | 21000 | 0.2531 | - |
|
585 |
+
| 0.5915 | 21050 | 0.2381 | - |
|
586 |
+
| 0.5929 | 21100 | 0.2009 | - |
|
587 |
+
| 0.5943 | 21150 | 0.0899 | - |
|
588 |
+
| 0.5957 | 21200 | 0.3046 | - |
|
589 |
+
| 0.5971 | 21250 | 0.2006 | - |
|
590 |
+
| 0.5985 | 21300 | 0.2289 | - |
|
591 |
+
| 0.5999 | 21350 | 0.1581 | - |
|
592 |
+
| 0.6013 | 21400 | 0.1769 | - |
|
593 |
+
| 0.6027 | 21450 | 0.2377 | - |
|
594 |
+
| 0.6041 | 21500 | 0.1988 | - |
|
595 |
+
| 0.6055 | 21550 | 0.2543 | - |
|
596 |
+
| 0.6069 | 21600 | 0.2517 | - |
|
597 |
+
| 0.6084 | 21650 | 0.2191 | - |
|
598 |
+
| 0.6098 | 21700 | 0.2803 | - |
|
599 |
+
| 0.6112 | 21750 | 0.2984 | - |
|
600 |
+
| 0.6126 | 21800 | 0.1915 | - |
|
601 |
+
| 0.6140 | 21850 | 0.189 | - |
|
602 |
+
| 0.6154 | 21900 | 0.1302 | - |
|
603 |
+
| 0.6168 | 21950 | 0.203 | - |
|
604 |
+
| 0.6182 | 22000 | 0.2038 | - |
|
605 |
+
| 0.6196 | 22050 | 0.134 | - |
|
606 |
+
| 0.6210 | 22100 | 0.1904 | - |
|
607 |
+
| 0.6224 | 22150 | 0.1477 | - |
|
608 |
+
| 0.6238 | 22200 | 0.1338 | - |
|
609 |
+
| 0.6252 | 22250 | 0.0709 | - |
|
610 |
+
| 0.6266 | 22300 | 0.0902 | - |
|
611 |
+
| 0.6280 | 22350 | 0.2025 | - |
|
612 |
+
| 0.6294 | 22400 | 0.0991 | - |
|
613 |
+
| 0.6308 | 22450 | 0.1321 | - |
|
614 |
+
| 0.6322 | 22500 | 0.1356 | - |
|
615 |
+
| 0.6336 | 22550 | 0.1682 | - |
|
616 |
+
| 0.6350 | 22600 | 0.2064 | - |
|
617 |
+
| 0.6365 | 22650 | 0.2 | - |
|
618 |
+
| 0.6379 | 22700 | 0.2105 | - |
|
619 |
+
| 0.6393 | 22750 | 0.2074 | - |
|
620 |
+
| 0.6407 | 22800 | 0.1901 | - |
|
621 |
+
| 0.6421 | 22850 | 0.1914 | - |
|
622 |
+
| 0.6435 | 22900 | 0.1831 | - |
|
623 |
+
| 0.6449 | 22950 | 0.1423 | - |
|
624 |
+
| 0.6463 | 23000 | 0.2502 | - |
|
625 |
+
| 0.6477 | 23050 | 0.1655 | - |
|
626 |
+
| 0.6491 | 23100 | 0.1585 | - |
|
627 |
+
| 0.6505 | 23150 | 0.2122 | - |
|
628 |
+
| 0.6519 | 23200 | 0.217 | - |
|
629 |
+
| 0.6533 | 23250 | 0.1704 | - |
|
630 |
+
| 0.6547 | 23300 | 0.189 | - |
|
631 |
+
| 0.6561 | 23350 | 0.1333 | - |
|
632 |
+
| 0.6575 | 23400 | 0.1863 | - |
|
633 |
+
| 0.6589 | 23450 | 0.2089 | - |
|
634 |
+
| 0.6603 | 23500 | 0.1261 | - |
|
635 |
+
| 0.6617 | 23550 | 0.1655 | - |
|
636 |
+
| 0.6631 | 23600 | 0.1721 | - |
|
637 |
+
| 0.6645 | 23650 | 0.083 | - |
|
638 |
+
| 0.6660 | 23700 | 0.1166 | - |
|
639 |
+
| 0.6674 | 23750 | 0.146 | - |
|
640 |
+
| 0.6688 | 23800 | 0.0423 | - |
|
641 |
+
| 0.6702 | 23850 | 0.1781 | - |
|
642 |
+
| 0.6716 | 23900 | 0.121 | - |
|
643 |
+
| 0.6730 | 23950 | 0.1624 | - |
|
644 |
+
| 0.6744 | 24000 | 0.1483 | - |
|
645 |
+
| 0.6758 | 24050 | 0.1479 | - |
|
646 |
+
| 0.6772 | 24100 | 0.2285 | - |
|
647 |
+
| 0.6786 | 24150 | 0.2084 | - |
|
648 |
+
| 0.6800 | 24200 | 0.12 | - |
|
649 |
+
| 0.6814 | 24250 | 0.115 | - |
|
650 |
+
| 0.6828 | 24300 | 0.1331 | - |
|
651 |
+
| 0.6842 | 24350 | 0.0971 | - |
|
652 |
+
| 0.6856 | 24400 | 0.0846 | - |
|
653 |
+
| 0.6870 | 24450 | 0.2254 | - |
|
654 |
+
| 0.6884 | 24500 | 0.1348 | - |
|
655 |
+
| 0.6898 | 24550 | 0.0633 | - |
|
656 |
+
| 0.6912 | 24600 | 0.1207 | - |
|
657 |
+
| 0.6926 | 24650 | 0.2109 | - |
|
658 |
+
| 0.6941 | 24700 | 0.0768 | - |
|
659 |
+
| 0.6955 | 24750 | 0.108 | - |
|
660 |
+
| 0.6969 | 24800 | 0.0665 | - |
|
661 |
+
| 0.6983 | 24850 | 0.0601 | - |
|
662 |
+
| 0.6997 | 24900 | 0.1922 | - |
|
663 |
+
| 0.7011 | 24950 | 0.1517 | - |
|
664 |
+
| 0.7025 | 25000 | 0.1049 | - |
|
665 |
+
| 0.7039 | 25050 | 0.1122 | - |
|
666 |
+
| 0.7053 | 25100 | 0.0973 | - |
|
667 |
+
| 0.7067 | 25150 | 0.1547 | - |
|
668 |
+
| 0.7081 | 25200 | 0.115 | - |
|
669 |
+
| 0.7095 | 25250 | 0.1881 | - |
|
670 |
+
| 0.7109 | 25300 | 0.2144 | - |
|
671 |
+
| 0.7123 | 25350 | 0.0567 | - |
|
672 |
+
| 0.7137 | 25400 | 0.0917 | - |
|
673 |
+
| 0.7151 | 25450 | 0.1404 | - |
|
674 |
+
| 0.7165 | 25500 | 0.019 | - |
|
675 |
+
| 0.7179 | 25550 | 0.1382 | - |
|
676 |
+
| 0.7193 | 25600 | 0.0727 | - |
|
677 |
+
| 0.7207 | 25650 | 0.1125 | - |
|
678 |
+
| 0.7222 | 25700 | 0.1133 | - |
|
679 |
+
| 0.7236 | 25750 | 0.0987 | - |
|
680 |
+
| 0.7250 | 25800 | 0.1915 | - |
|
681 |
+
| 0.7264 | 25850 | 0.09 | - |
|
682 |
+
| 0.7278 | 25900 | 0.1462 | - |
|
683 |
+
| 0.7292 | 25950 | 0.0881 | - |
|
684 |
+
| 0.7306 | 26000 | 0.1026 | - |
|
685 |
+
| 0.7320 | 26050 | 0.1079 | - |
|
686 |
+
| 0.7334 | 26100 | 0.1639 | - |
|
687 |
+
| 0.7348 | 26150 | 0.1229 | - |
|
688 |
+
| 0.7362 | 26200 | 0.3261 | - |
|
689 |
+
| 0.7376 | 26250 | 0.1426 | - |
|
690 |
+
| 0.7390 | 26300 | 0.0773 | - |
|
691 |
+
| 0.7404 | 26350 | 0.1607 | - |
|
692 |
+
| 0.7418 | 26400 | 0.1354 | - |
|
693 |
+
| 0.7432 | 26450 | 0.1512 | - |
|
694 |
+
| 0.7446 | 26500 | 0.1875 | - |
|
695 |
+
| 0.7460 | 26550 | 0.1403 | - |
|
696 |
+
| 0.7474 | 26600 | 0.1287 | - |
|
697 |
+
| 0.7488 | 26650 | 0.1892 | - |
|
698 |
+
| 0.7503 | 26700 | 0.166 | - |
|
699 |
+
| 0.7517 | 26750 | 0.2385 | - |
|
700 |
+
| 0.7531 | 26800 | 0.1445 | - |
|
701 |
+
| 0.7545 | 26850 | 0.0969 | - |
|
702 |
+
| 0.7559 | 26900 | 0.0948 | - |
|
703 |
+
| 0.7573 | 26950 | 0.0589 | - |
|
704 |
+
| 0.7587 | 27000 | 0.2326 | - |
|
705 |
+
| 0.7601 | 27050 | 0.1438 | - |
|
706 |
+
| 0.7615 | 27100 | 0.1032 | - |
|
707 |
+
| 0.7629 | 27150 | 0.0784 | - |
|
708 |
+
| 0.7643 | 27200 | 0.1478 | - |
|
709 |
+
| 0.7657 | 27250 | 0.1872 | - |
|
710 |
+
| 0.7671 | 27300 | 0.0672 | - |
|
711 |
+
| 0.7685 | 27350 | 0.0725 | - |
|
712 |
+
| 0.7699 | 27400 | 0.0771 | - |
|
713 |
+
| 0.7713 | 27450 | 0.2575 | - |
|
714 |
+
| 0.7727 | 27500 | 0.133 | - |
|
715 |
+
| 0.7741 | 27550 | 0.1222 | - |
|
716 |
+
| 0.7755 | 27600 | 0.1207 | - |
|
717 |
+
| 0.7769 | 27650 | 0.0973 | - |
|
718 |
+
| 0.7784 | 27700 | 0.2186 | - |
|
719 |
+
| 0.7798 | 27750 | 0.1648 | - |
|
720 |
+
| 0.7812 | 27800 | 0.1128 | - |
|
721 |
+
| 0.7826 | 27850 | 0.1626 | - |
|
722 |
+
| 0.7840 | 27900 | 0.1768 | - |
|
723 |
+
| 0.7854 | 27950 | 0.1806 | - |
|
724 |
+
| 0.7868 | 28000 | 0.1197 | - |
|
725 |
+
| 0.7882 | 28050 | 0.0472 | - |
|
726 |
+
| 0.7896 | 28100 | 0.1463 | - |
|
727 |
+
| 0.7910 | 28150 | 0.1707 | - |
|
728 |
+
| 0.7924 | 28200 | 0.0924 | - |
|
729 |
+
| 0.7938 | 28250 | 0.1708 | - |
|
730 |
+
| 0.7952 | 28300 | 0.1101 | - |
|
731 |
+
| 0.7966 | 28350 | 0.0867 | - |
|
732 |
+
| 0.7980 | 28400 | 0.1606 | - |
|
733 |
+
| 0.7994 | 28450 | 0.2422 | - |
|
734 |
+
| 0.8008 | 28500 | 0.1289 | - |
|
735 |
+
| 0.8022 | 28550 | 0.0513 | - |
|
736 |
+
| 0.8036 | 28600 | 0.1468 | - |
|
737 |
+
| 0.8050 | 28650 | 0.1742 | - |
|
738 |
+
| 0.8065 | 28700 | 0.0813 | - |
|
739 |
+
| 0.8079 | 28750 | 0.0916 | - |
|
740 |
+
| 0.8093 | 28800 | 0.0826 | - |
|
741 |
+
| 0.8107 | 28850 | 0.1457 | - |
|
742 |
+
| 0.8121 | 28900 | 0.0952 | - |
|
743 |
+
| 0.8135 | 28950 | 0.1376 | - |
|
744 |
+
| 0.8149 | 29000 | 0.06 | - |
|
745 |
+
| 0.8163 | 29050 | 0.1221 | - |
|
746 |
+
| 0.8177 | 29100 | 0.0713 | - |
|
747 |
+
| 0.8191 | 29150 | 0.1219 | - |
|
748 |
+
| 0.8205 | 29200 | 0.1051 | - |
|
749 |
+
| 0.8219 | 29250 | 0.1503 | - |
|
750 |
+
| 0.8233 | 29300 | 0.1128 | - |
|
751 |
+
| 0.8247 | 29350 | 0.0946 | - |
|
752 |
+
| 0.8261 | 29400 | 0.2115 | - |
|
753 |
+
| 0.8275 | 29450 | 0.1058 | - |
|
754 |
+
| 0.8289 | 29500 | 0.1085 | - |
|
755 |
+
| 0.8303 | 29550 | 0.1632 | - |
|
756 |
+
| 0.8317 | 29600 | 0.1022 | - |
|
757 |
+
| 0.8331 | 29650 | 0.136 | - |
|
758 |
+
| 0.8346 | 29700 | 0.1231 | - |
|
759 |
+
| 0.8360 | 29750 | 0.0929 | - |
|
760 |
+
| 0.8374 | 29800 | 0.1299 | - |
|
761 |
+
| 0.8388 | 29850 | 0.0693 | - |
|
762 |
+
| 0.8402 | 29900 | 0.0738 | - |
|
763 |
+
| 0.8416 | 29950 | 0.0826 | - |
|
764 |
+
| 0.8430 | 30000 | 0.1831 | - |
|
765 |
+
| 0.8444 | 30050 | 0.0962 | - |
|
766 |
+
| 0.8458 | 30100 | 0.0869 | - |
|
767 |
+
| 0.8472 | 30150 | 0.1459 | - |
|
768 |
+
| 0.8486 | 30200 | 0.1468 | - |
|
769 |
+
| 0.8500 | 30250 | 0.2132 | - |
|
770 |
+
| 0.8514 | 30300 | 0.1472 | - |
|
771 |
+
| 0.8528 | 30350 | 0.1294 | - |
|
772 |
+
| 0.8542 | 30400 | 0.0822 | - |
|
773 |
+
| 0.8556 | 30450 | 0.144 | - |
|
774 |
+
| 0.8570 | 30500 | 0.1216 | - |
|
775 |
+
| 0.8584 | 30550 | 0.1381 | - |
|
776 |
+
| 0.8598 | 30600 | 0.1612 | - |
|
777 |
+
| 0.8612 | 30650 | 0.1665 | - |
|
778 |
+
| 0.8627 | 30700 | 0.2035 | - |
|
779 |
+
| 0.8641 | 30750 | 0.136 | - |
|
780 |
+
| 0.8655 | 30800 | 0.1685 | - |
|
781 |
+
| 0.8669 | 30850 | 0.1421 | - |
|
782 |
+
| 0.8683 | 30900 | 0.1169 | - |
|
783 |
+
| 0.8697 | 30950 | 0.1799 | - |
|
784 |
+
| 0.8711 | 31000 | 0.2185 | - |
|
785 |
+
| 0.8725 | 31050 | 0.1321 | - |
|
786 |
+
| 0.8739 | 31100 | 0.145 | - |
|
787 |
+
| 0.8753 | 31150 | 0.1848 | - |
|
788 |
+
| 0.8767 | 31200 | 0.2173 | - |
|
789 |
+
| 0.8781 | 31250 | 0.2036 | - |
|
790 |
+
| 0.8795 | 31300 | 0.2056 | - |
|
791 |
+
| 0.8809 | 31350 | 0.312 | - |
|
792 |
+
| 0.8823 | 31400 | 0.2119 | - |
|
793 |
+
| 0.8837 | 31450 | 0.1875 | - |
|
794 |
+
| 0.8851 | 31500 | 0.2216 | - |
|
795 |
+
| 0.8865 | 31550 | 0.2267 | - |
|
796 |
+
| 0.8879 | 31600 | 0.2709 | - |
|
797 |
+
| 0.8893 | 31650 | 0.1868 | - |
|
798 |
+
| 0.8907 | 31700 | 0.1752 | - |
|
799 |
+
| 0.8922 | 31750 | 0.2468 | - |
|
800 |
+
| 0.8936 | 31800 | 0.1632 | - |
|
801 |
+
| 0.8950 | 31850 | 0.2483 | - |
|
802 |
+
| 0.8964 | 31900 | 0.1597 | - |
|
803 |
+
| 0.8978 | 31950 | 0.1587 | - |
|
804 |
+
| 0.8992 | 32000 | 0.0897 | - |
|
805 |
+
| 0.9006 | 32050 | 0.0764 | - |
|
806 |
+
| 0.9020 | 32100 | 0.1798 | - |
|
807 |
+
| 0.9034 | 32150 | 0.1254 | - |
|
808 |
+
| 0.9048 | 32200 | 0.1905 | - |
|
809 |
+
| 0.9062 | 32250 | 0.0714 | - |
|
810 |
+
| 0.9076 | 32300 | 0.1377 | - |
|
811 |
+
| 0.9090 | 32350 | 0.0192 | - |
|
812 |
+
| 0.9104 | 32400 | 0.1208 | - |
|
813 |
+
| 0.9118 | 32450 | 0.239 | - |
|
814 |
+
| 0.9132 | 32500 | 0.0965 | - |
|
815 |
+
| 0.9146 | 32550 | 0.1189 | - |
|
816 |
+
| 0.9160 | 32600 | 0.0856 | - |
|
817 |
+
| 0.9174 | 32650 | 0.1041 | - |
|
818 |
+
| 0.9188 | 32700 | 0.1107 | - |
|
819 |
+
| 0.9203 | 32750 | 0.1499 | - |
|
820 |
+
| 0.9217 | 32800 | 0.0874 | - |
|
821 |
+
| 0.9231 | 32850 | 0.1255 | - |
|
822 |
+
| 0.9245 | 32900 | 0.1099 | - |
|
823 |
+
| 0.9259 | 32950 | 0.1806 | - |
|
824 |
+
| 0.9273 | 33000 | 0.0544 | - |
|
825 |
+
| 0.9287 | 33050 | 0.0504 | - |
|
826 |
+
| 0.9301 | 33100 | 0.2441 | - |
|
827 |
+
| 0.9315 | 33150 | 0.0266 | - |
|
828 |
+
| 0.9329 | 33200 | 0.0985 | - |
|
829 |
+
| 0.9343 | 33250 | 0.0923 | - |
|
830 |
+
| 0.9357 | 33300 | 0.1054 | - |
|
831 |
+
| 0.9371 | 33350 | 0.0625 | - |
|
832 |
+
| 0.9385 | 33400 | 0.0882 | - |
|
833 |
+
| 0.9399 | 33450 | 0.102 | - |
|
834 |
+
| 0.9413 | 33500 | 0.108 | - |
|
835 |
+
| 0.9427 | 33550 | 0.135 | - |
|
836 |
+
| 0.9441 | 33600 | 0.1016 | - |
|
837 |
+
| 0.9455 | 33650 | 0.2008 | - |
|
838 |
+
| 0.9469 | 33700 | 0.0591 | - |
|
839 |
+
| 0.9484 | 33750 | 0.1922 | - |
|
840 |
+
| 0.9498 | 33800 | 0.1045 | - |
|
841 |
+
| 0.9512 | 33850 | 0.102 | - |
|
842 |
+
| 0.9526 | 33900 | 0.0634 | - |
|
843 |
+
| 0.9540 | 33950 | 0.0668 | - |
|
844 |
+
| 0.9554 | 34000 | 0.1339 | - |
|
845 |
+
| 0.9568 | 34050 | 0.0599 | - |
|
846 |
+
| 0.9582 | 34100 | 0.0623 | - |
|
847 |
+
| 0.9596 | 34150 | 0.1133 | - |
|
848 |
+
| 0.9610 | 34200 | 0.1218 | - |
|
849 |
+
| 0.9624 | 34250 | 0.0618 | - |
|
850 |
+
| 0.9638 | 34300 | 0.1062 | - |
|
851 |
+
| 0.9652 | 34350 | 0.0909 | - |
|
852 |
+
| 0.9666 | 34400 | 0.0885 | - |
|
853 |
+
| 0.9680 | 34450 | 0.1461 | - |
|
854 |
+
| 0.9694 | 34500 | 0.0254 | - |
|
855 |
+
| 0.9708 | 34550 | 0.0697 | - |
|
856 |
+
| 0.9722 | 34600 | 0.016 | - |
|
857 |
+
| 0.9736 | 34650 | 0.1524 | - |
|
858 |
+
| 0.9750 | 34700 | 0.1468 | - |
|
859 |
+
| 0.9765 | 34750 | 0.1497 | - |
|
860 |
+
| 0.9779 | 34800 | 0.0785 | - |
|
861 |
+
| 0.9793 | 34850 | 0.0645 | - |
|
862 |
+
| 0.9807 | 34900 | 0.1357 | - |
|
863 |
+
| 0.9821 | 34950 | 0.1469 | - |
|
864 |
+
| 0.9835 | 35000 | 0.2356 | - |
|
865 |
+
| 0.9849 | 35050 | 0.018 | - |
|
866 |
+
| 0.9863 | 35100 | 0.1534 | - |
|
867 |
+
| 0.9877 | 35150 | 0.14 | - |
|
868 |
+
| 0.9891 | 35200 | 0.1001 | - |
|
869 |
+
| 0.9905 | 35250 | 0.0614 | - |
|
870 |
+
| 0.9919 | 35300 | 0.1407 | - |
|
871 |
+
| 0.9933 | 35350 | 0.1104 | - |
|
872 |
+
| 0.9947 | 35400 | 0.1477 | - |
|
873 |
+
| 0.9961 | 35450 | 0.1279 | - |
|
874 |
+
| 0.9975 | 35500 | 0.0957 | - |
|
875 |
+
| 0.9989 | 35550 | 0.0579 | - |
|
876 |
+
| **1.0** | **35588** | **-** | **0.1207** |
|
877 |
+
|
878 |
+
* The bold row denotes the saved checkpoint.
|
879 |
+
### Framework Versions
|
880 |
+
- Python: 3.11.9
|
881 |
+
- SetFit: 1.1.0.dev0
|
882 |
+
- Sentence Transformers: 3.0.1
|
883 |
+
- Transformers: 4.44.2
|
884 |
+
- PyTorch: 2.4.0+cu121
|
885 |
+
- Datasets: 2.21.0
|
886 |
+
- Tokenizers: 0.19.1
|
887 |
+
|
888 |
+
## Citation
|
889 |
+
|
890 |
+
### BibTeX
|
891 |
+
```bibtex
|
892 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
893 |
+
doi = {10.48550/ARXIV.2209.11055},
|
894 |
+
url = {https://arxiv.org/abs/2209.11055},
|
895 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
896 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
897 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
898 |
+
publisher = {arXiv},
|
899 |
+
year = {2022},
|
900 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
901 |
+
}
|
902 |
+
```
|
903 |
+
|
904 |
+
<!--
|
905 |
+
## Glossary
|
906 |
+
|
907 |
+
*Clearly define terms in order to be accessible across audiences.*
|
908 |
+
-->
|
909 |
+
|
910 |
+
<!--
|
911 |
+
## Model Card Authors
|
912 |
+
|
913 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
914 |
+
-->
|
915 |
+
|
916 |
+
<!--
|
917 |
+
## Model Card Contact
|
918 |
+
|
919 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
920 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "bge-large-en-v1.5-brahmaputra-iter-9-1-epoch/step_35588",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 4096,
|
17 |
+
"label2id": {
|
18 |
+
"LABEL_0": 0
|
19 |
+
},
|
20 |
+
"layer_norm_eps": 1e-12,
|
21 |
+
"max_position_embeddings": 512,
|
22 |
+
"model_type": "bert",
|
23 |
+
"num_attention_heads": 16,
|
24 |
+
"num_hidden_layers": 24,
|
25 |
+
"pad_token_id": 0,
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.44.2",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 30522
|
32 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.44.2",
|
5 |
+
"pytorch": "2.4.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": [
|
4 |
+
"Tablejoin",
|
5 |
+
"Rejection",
|
6 |
+
"Aggregation",
|
7 |
+
"Lookup",
|
8 |
+
"Generalreply",
|
9 |
+
"Viewtables",
|
10 |
+
"Lookup_1"
|
11 |
+
]
|
12 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2a652df5289a39b803aac115c775c6118ab178f030731bae9a5a1c028cf5c33
|
3 |
+
size 1340612432
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae6aaf2fd6ef1d72e0c0784121aff536f1392e1ce2a75a939db4a8d7395e175a
|
3 |
+
size 58575
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 512,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|