nazhan commited on
Commit
3bb91ee
1 Parent(s): 272dfb0

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,920 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-large-en-v1.5
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: Get me var Product_Profitability.
14
+ - text: What’s the best way to merge the Orders and Employees tables to identify the
15
+ top-performing departments?
16
+ - text: Please show min Total Company Revenue.
17
+ - text: Get me avg Intangible Assets.
18
+ - text: Can I join the Customers and Orders tables to find out which customers have
19
+ the highest lifetime value?
20
+ inference: true
21
+ model-index:
22
+ - name: SetFit with BAAI/bge-large-en-v1.5
23
+ results:
24
+ - task:
25
+ type: text-classification
26
+ name: Text Classification
27
+ dataset:
28
+ name: Unknown
29
+ type: unknown
30
+ split: test
31
+ metrics:
32
+ - type: accuracy
33
+ value: 0.5726495726495726
34
+ name: Accuracy
35
+ ---
36
+
37
+ # SetFit with BAAI/bge-large-en-v1.5
38
+
39
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
40
+
41
+ The model has been trained using an efficient few-shot learning technique that involves:
42
+
43
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
44
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
45
+
46
+ ## Model Details
47
+
48
+ ### Model Description
49
+ - **Model Type:** SetFit
50
+ - **Sentence Transformer body:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5)
51
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
52
+ - **Maximum Sequence Length:** 512 tokens
53
+ - **Number of Classes:** 7 classes
54
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
55
+ <!-- - **Language:** Unknown -->
56
+ <!-- - **License:** Unknown -->
57
+
58
+ ### Model Sources
59
+
60
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
61
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
62
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
63
+
64
+ ### Model Labels
65
+ | Label | Examples |
66
+ |:-------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
67
+ | Generalreply | <ul><li>'How was your day today?'</li><li>'Oh, I have a lot of hobbies actually! But if I had to pick one, I would say that my favorite is probably reading. I love getting lost in a good book and discovering new worlds and characters. How about you?'</li><li>'Honestly, I hope to achieve a lot in the next 5 years. I want to continue growing in my career and learn new skills. I also aspire to travel more and experience different cultures. Overall, my goal is to be happy and fulfilled in both my personal and professional life. How about you? What are your hopes for the next 5 years?'</li></ul> |
68
+ | Lookup_1 | <ul><li>'i want to get trend analysis and group by product'</li><li>'Show me data_asset_001_pcc details.'</li><li>'Analyze Product-wise EBIT Margin Trend.'</li></ul> |
69
+ | Tablejoin | <ul><li>'Join data_asset_001_kpm with data_asset_kpi_is.'</li><li>'Can I merge cash flow and key performance metrics tables?'</li><li>'Join product category comparison and trend analysis tables.'</li></ul> |
70
+ | Rejection | <ul><li>"I'm not interested in filtering this collection."</li><li>"I don't want to create any new data outputs."</li><li>"I don't want to perform any filtering."</li></ul> |
71
+ | Aggregation | <ul><li>'Can I have avg Cost_Broadband?'</li><li>'Please show min % YoY Change.'</li><li>'Get me avg Earning_per_Cost.'</li></ul> |
72
+ | Viewtables | <ul><li>'What tables are included in the starhub_data_asset database that relate to customer complaints?'</li><li>'I need to see a list of tables that contain information about network outages.'</li><li>'What are the available tables in the starhub_data_asset database that are relevant to financial reporting?'</li></ul> |
73
+ | Lookup | <ul><li>'Filter by orders placed by customer ID 102 and get me the order dates.'</li><li>'Show me the orders placed on January 1st, 2024.'</li><li>"Get me the phone number of the customer with the first name 'Alice'."</li></ul> |
74
+
75
+ ## Evaluation
76
+
77
+ ### Metrics
78
+ | Label | Accuracy |
79
+ |:--------|:---------|
80
+ | **all** | 0.5726 |
81
+
82
+ ## Uses
83
+
84
+ ### Direct Use for Inference
85
+
86
+ First install the SetFit library:
87
+
88
+ ```bash
89
+ pip install setfit
90
+ ```
91
+
92
+ Then you can load this model and run inference.
93
+
94
+ ```python
95
+ from setfit import SetFitModel
96
+
97
+ # Download from the 🤗 Hub
98
+ model = SetFitModel.from_pretrained("nazhan/bge-large-en-v1.5-brahmaputra-iter-9-1-epoch")
99
+ # Run inference
100
+ preds = model("Get me avg Intangible Assets.")
101
+ ```
102
+
103
+ <!--
104
+ ### Downstream Use
105
+
106
+ *List how someone could finetune this model on their own dataset.*
107
+ -->
108
+
109
+ <!--
110
+ ### Out-of-Scope Use
111
+
112
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
113
+ -->
114
+
115
+ <!--
116
+ ## Bias, Risks and Limitations
117
+
118
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
119
+ -->
120
+
121
+ <!--
122
+ ### Recommendations
123
+
124
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
125
+ -->
126
+
127
+ ## Training Details
128
+
129
+ ### Training Set Metrics
130
+ | Training set | Min | Median | Max |
131
+ |:-------------|:----|:-------|:----|
132
+ | Word count | 2 | 8.7792 | 62 |
133
+
134
+ | Label | Training Sample Count |
135
+ |:-------------|:----------------------|
136
+ | Tablejoin | 126 |
137
+ | Rejection | 72 |
138
+ | Aggregation | 221 |
139
+ | Lookup | 62 |
140
+ | Generalreply | 60 |
141
+ | Viewtables | 73 |
142
+ | Lookup_1 | 224 |
143
+
144
+ ### Training Hyperparameters
145
+ - batch_size: (16, 16)
146
+ - num_epochs: (1, 1)
147
+ - max_steps: -1
148
+ - sampling_strategy: oversampling
149
+ - body_learning_rate: (2e-05, 1e-05)
150
+ - head_learning_rate: 0.01
151
+ - loss: CosineSimilarityLoss
152
+ - distance_metric: cosine_distance
153
+ - margin: 0.25
154
+ - end_to_end: False
155
+ - use_amp: False
156
+ - warmup_proportion: 0.1
157
+ - seed: 42
158
+ - eval_max_steps: -1
159
+ - load_best_model_at_end: True
160
+
161
+ ### Training Results
162
+ | Epoch | Step | Training Loss | Validation Loss |
163
+ |:-------:|:---------:|:-------------:|:---------------:|
164
+ | 0.0000 | 1 | 0.2059 | - |
165
+ | 0.0014 | 50 | 0.1956 | - |
166
+ | 0.0028 | 100 | 0.207 | - |
167
+ | 0.0042 | 150 | 0.1783 | - |
168
+ | 0.0056 | 200 | 0.1517 | - |
169
+ | 0.0070 | 250 | 0.1795 | - |
170
+ | 0.0084 | 300 | 0.1227 | - |
171
+ | 0.0098 | 350 | 0.063 | - |
172
+ | 0.0112 | 400 | 0.0451 | - |
173
+ | 0.0126 | 450 | 0.0408 | - |
174
+ | 0.0140 | 500 | 0.0576 | - |
175
+ | 0.0155 | 550 | 0.0178 | - |
176
+ | 0.0169 | 600 | 0.0244 | - |
177
+ | 0.0183 | 650 | 0.0072 | - |
178
+ | 0.0197 | 700 | 0.0223 | - |
179
+ | 0.0211 | 750 | 0.0046 | - |
180
+ | 0.0225 | 800 | 0.003 | - |
181
+ | 0.0239 | 850 | 0.004 | - |
182
+ | 0.0253 | 900 | 0.0042 | - |
183
+ | 0.0267 | 950 | 0.0047 | - |
184
+ | 0.0281 | 1000 | 0.0045 | - |
185
+ | 0.0295 | 1050 | 0.0032 | - |
186
+ | 0.0309 | 1100 | 0.0021 | - |
187
+ | 0.0323 | 1150 | 0.0028 | - |
188
+ | 0.0337 | 1200 | 0.0022 | - |
189
+ | 0.0351 | 1250 | 0.0024 | - |
190
+ | 0.0365 | 1300 | 0.0019 | - |
191
+ | 0.0379 | 1350 | 0.002 | - |
192
+ | 0.0393 | 1400 | 0.0015 | - |
193
+ | 0.0407 | 1450 | 0.0016 | - |
194
+ | 0.0421 | 1500 | 0.0014 | - |
195
+ | 0.0436 | 1550 | 0.0013 | - |
196
+ | 0.0450 | 1600 | 0.0016 | - |
197
+ | 0.0464 | 1650 | 0.0011 | - |
198
+ | 0.0478 | 1700 | 0.0012 | - |
199
+ | 0.0492 | 1750 | 0.0011 | - |
200
+ | 0.0506 | 1800 | 0.0015 | - |
201
+ | 0.0520 | 1850 | 0.0016 | - |
202
+ | 0.0534 | 1900 | 0.0012 | - |
203
+ | 0.0548 | 1950 | 0.0008 | - |
204
+ | 0.0562 | 2000 | 0.0011 | - |
205
+ | 0.0576 | 2050 | 0.001 | - |
206
+ | 0.0590 | 2100 | 0.001 | - |
207
+ | 0.0604 | 2150 | 0.0008 | - |
208
+ | 0.0618 | 2200 | 0.0009 | - |
209
+ | 0.0632 | 2250 | 0.0007 | - |
210
+ | 0.0646 | 2300 | 0.0008 | - |
211
+ | 0.0660 | 2350 | 0.0006 | - |
212
+ | 0.0674 | 2400 | 0.0007 | - |
213
+ | 0.0688 | 2450 | 0.0008 | - |
214
+ | 0.0702 | 2500 | 0.0006 | - |
215
+ | 0.0717 | 2550 | 0.0007 | - |
216
+ | 0.0731 | 2600 | 0.0006 | - |
217
+ | 0.0745 | 2650 | 0.0007 | - |
218
+ | 0.0759 | 2700 | 0.0005 | - |
219
+ | 0.0773 | 2750 | 0.0006 | - |
220
+ | 0.0787 | 2800 | 0.0007 | - |
221
+ | 0.0801 | 2850 | 0.0007 | - |
222
+ | 0.0815 | 2900 | 0.0005 | - |
223
+ | 0.0829 | 2950 | 0.0008 | - |
224
+ | 0.0843 | 3000 | 0.0005 | - |
225
+ | 0.0857 | 3050 | 0.0007 | - |
226
+ | 0.0871 | 3100 | 0.0006 | - |
227
+ | 0.0885 | 3150 | 0.0005 | - |
228
+ | 0.0899 | 3200 | 0.0007 | - |
229
+ | 0.0913 | 3250 | 0.0005 | - |
230
+ | 0.0927 | 3300 | 0.0004 | - |
231
+ | 0.0941 | 3350 | 0.0005 | - |
232
+ | 0.0955 | 3400 | 0.0003 | - |
233
+ | 0.0969 | 3450 | 0.0004 | - |
234
+ | 0.0983 | 3500 | 0.0004 | - |
235
+ | 0.0998 | 3550 | 0.0004 | - |
236
+ | 0.1012 | 3600 | 0.0004 | - |
237
+ | 0.1026 | 3650 | 0.0004 | - |
238
+ | 0.1040 | 3700 | 0.0004 | - |
239
+ | 0.1054 | 3750 | 0.0004 | - |
240
+ | 0.1068 | 3800 | 0.0003 | - |
241
+ | 0.1082 | 3850 | 0.0003 | - |
242
+ | 0.1096 | 3900 | 0.0005 | - |
243
+ | 0.1110 | 3950 | 0.0005 | - |
244
+ | 0.1124 | 4000 | 0.0005 | - |
245
+ | 0.1138 | 4050 | 0.0003 | - |
246
+ | 0.1152 | 4100 | 0.0006 | - |
247
+ | 0.1166 | 4150 | 0.0004 | - |
248
+ | 0.1180 | 4200 | 0.0003 | - |
249
+ | 0.1194 | 4250 | 0.0004 | - |
250
+ | 0.1208 | 4300 | 0.0003 | - |
251
+ | 0.1222 | 4350 | 0.0004 | - |
252
+ | 0.1236 | 4400 | 0.0003 | - |
253
+ | 0.1250 | 4450 | 0.0003 | - |
254
+ | 0.1264 | 4500 | 0.0004 | - |
255
+ | 0.1279 | 4550 | 0.0003 | - |
256
+ | 0.1293 | 4600 | 0.0005 | - |
257
+ | 0.1307 | 4650 | 0.0004 | - |
258
+ | 0.1321 | 4700 | 0.0003 | - |
259
+ | 0.1335 | 4750 | 0.0004 | - |
260
+ | 0.1349 | 4800 | 0.0003 | - |
261
+ | 0.1363 | 4850 | 0.0003 | - |
262
+ | 0.1377 | 4900 | 0.0003 | - |
263
+ | 0.1391 | 4950 | 0.0003 | - |
264
+ | 0.1405 | 5000 | 0.0003 | - |
265
+ | 0.1419 | 5050 | 0.0003 | - |
266
+ | 0.1433 | 5100 | 0.0004 | - |
267
+ | 0.1447 | 5150 | 0.0003 | - |
268
+ | 0.1461 | 5200 | 0.0004 | - |
269
+ | 0.1475 | 5250 | 0.0004 | - |
270
+ | 0.1489 | 5300 | 0.0003 | - |
271
+ | 0.1503 | 5350 | 0.0003 | - |
272
+ | 0.1517 | 5400 | 0.0003 | - |
273
+ | 0.1531 | 5450 | 0.0003 | - |
274
+ | 0.1545 | 5500 | 0.0002 | - |
275
+ | 0.1560 | 5550 | 0.0003 | - |
276
+ | 0.1574 | 5600 | 0.0003 | - |
277
+ | 0.1588 | 5650 | 0.0003 | - |
278
+ | 0.1602 | 5700 | 0.0002 | - |
279
+ | 0.1616 | 5750 | 0.0002 | - |
280
+ | 0.1630 | 5800 | 0.0003 | - |
281
+ | 0.1644 | 5850 | 0.0002 | - |
282
+ | 0.1658 | 5900 | 0.0003 | - |
283
+ | 0.1672 | 5950 | 0.0002 | - |
284
+ | 0.1686 | 6000 | 0.0002 | - |
285
+ | 0.1700 | 6050 | 0.0002 | - |
286
+ | 0.1714 | 6100 | 0.0002 | - |
287
+ | 0.1728 | 6150 | 0.0003 | - |
288
+ | 0.1742 | 6200 | 0.0003 | - |
289
+ | 0.1756 | 6250 | 0.0003 | - |
290
+ | 0.1770 | 6300 | 0.0003 | - |
291
+ | 0.1784 | 6350 | 0.0002 | - |
292
+ | 0.1798 | 6400 | 0.0003 | - |
293
+ | 0.1812 | 6450 | 0.0002 | - |
294
+ | 0.1826 | 6500 | 0.0003 | - |
295
+ | 0.1841 | 6550 | 0.0002 | - |
296
+ | 0.1855 | 6600 | 0.0002 | - |
297
+ | 0.1869 | 6650 | 0.0002 | - |
298
+ | 0.1883 | 6700 | 0.0002 | - |
299
+ | 0.1897 | 6750 | 0.0003 | - |
300
+ | 0.1911 | 6800 | 0.0003 | - |
301
+ | 0.1925 | 6850 | 0.0002 | - |
302
+ | 0.1939 | 6900 | 0.0002 | - |
303
+ | 0.1953 | 6950 | 0.0002 | - |
304
+ | 0.1967 | 7000 | 0.0002 | - |
305
+ | 0.1981 | 7050 | 0.0001 | - |
306
+ | 0.1995 | 7100 | 0.0002 | - |
307
+ | 0.2009 | 7150 | 0.0002 | - |
308
+ | 0.2023 | 7200 | 0.0002 | - |
309
+ | 0.2037 | 7250 | 0.0002 | - |
310
+ | 0.2051 | 7300 | 0.0002 | - |
311
+ | 0.2065 | 7350 | 0.0001 | - |
312
+ | 0.2079 | 7400 | 0.0002 | - |
313
+ | 0.2093 | 7450 | 0.0024 | - |
314
+ | 0.2107 | 7500 | 0.0718 | - |
315
+ | 0.2122 | 7550 | 0.1 | - |
316
+ | 0.2136 | 7600 | 0.1876 | - |
317
+ | 0.2150 | 7650 | 0.1006 | - |
318
+ | 0.2164 | 7700 | 0.163 | - |
319
+ | 0.2178 | 7750 | 0.1008 | - |
320
+ | 0.2192 | 7800 | 0.1073 | - |
321
+ | 0.2206 | 7850 | 0.2059 | - |
322
+ | 0.2220 | 7900 | 0.112 | - |
323
+ | 0.2234 | 7950 | 0.1103 | - |
324
+ | 0.2248 | 8000 | 0.1921 | - |
325
+ | 0.2262 | 8050 | 0.0641 | - |
326
+ | 0.2276 | 8100 | 0.0992 | - |
327
+ | 0.2290 | 8150 | 0.2486 | - |
328
+ | 0.2304 | 8200 | 0.1716 | - |
329
+ | 0.2318 | 8250 | 0.142 | - |
330
+ | 0.2332 | 8300 | 0.1431 | - |
331
+ | 0.2346 | 8350 | 0.1774 | - |
332
+ | 0.2360 | 8400 | 0.1537 | - |
333
+ | 0.2374 | 8450 | 0.1902 | - |
334
+ | 0.2388 | 8500 | 0.1015 | - |
335
+ | 0.2402 | 8550 | 0.1401 | - |
336
+ | 0.2417 | 8600 | 0.2599 | - |
337
+ | 0.2431 | 8650 | 0.261 | - |
338
+ | 0.2445 | 8700 | 0.1861 | - |
339
+ | 0.2459 | 8750 | 0.1743 | - |
340
+ | 0.2473 | 8800 | 0.1705 | - |
341
+ | 0.2487 | 8850 | 0.1752 | - |
342
+ | 0.2501 | 8900 | 0.0914 | - |
343
+ | 0.2515 | 8950 | 0.1651 | - |
344
+ | 0.2529 | 9000 | 0.1165 | - |
345
+ | 0.2543 | 9050 | 0.2675 | - |
346
+ | 0.2557 | 9100 | 0.0953 | - |
347
+ | 0.2571 | 9150 | 0.0713 | - |
348
+ | 0.2585 | 9200 | 0.1782 | - |
349
+ | 0.2599 | 9250 | 0.1995 | - |
350
+ | 0.2613 | 9300 | 0.2393 | - |
351
+ | 0.2627 | 9350 | 0.1734 | - |
352
+ | 0.2641 | 9400 | 0.2222 | - |
353
+ | 0.2655 | 9450 | 0.3005 | - |
354
+ | 0.2669 | 9500 | 0.2252 | - |
355
+ | 0.2683 | 9550 | 0.2498 | - |
356
+ | 0.2698 | 9600 | 0.3293 | - |
357
+ | 0.2712 | 9650 | 0.2422 | - |
358
+ | 0.2726 | 9700 | 0.1943 | - |
359
+ | 0.2740 | 9750 | 0.2497 | - |
360
+ | 0.2754 | 9800 | 0.2538 | - |
361
+ | 0.2768 | 9850 | 0.2114 | - |
362
+ | 0.2782 | 9900 | 0.1719 | - |
363
+ | 0.2796 | 9950 | 0.2453 | - |
364
+ | 0.2810 | 10000 | 0.2571 | - |
365
+ | 0.2824 | 10050 | 0.2267 | - |
366
+ | 0.2838 | 10100 | 0.2274 | - |
367
+ | 0.2852 | 10150 | 0.2441 | - |
368
+ | 0.2866 | 10200 | 0.2536 | - |
369
+ | 0.2880 | 10250 | 0.236 | - |
370
+ | 0.2894 | 10300 | 0.204 | - |
371
+ | 0.2908 | 10350 | 0.2636 | - |
372
+ | 0.2922 | 10400 | 0.2562 | - |
373
+ | 0.2936 | 10450 | 0.2437 | - |
374
+ | 0.2950 | 10500 | 0.2395 | - |
375
+ | 0.2964 | 10550 | 0.2616 | - |
376
+ | 0.2979 | 10600 | 0.272 | - |
377
+ | 0.2993 | 10650 | 0.2637 | - |
378
+ | 0.3007 | 10700 | 0.2503 | - |
379
+ | 0.3021 | 10750 | 0.2401 | - |
380
+ | 0.3035 | 10800 | 0.2485 | - |
381
+ | 0.3049 | 10850 | 0.2521 | - |
382
+ | 0.3063 | 10900 | 0.256 | - |
383
+ | 0.3077 | 10950 | 0.2363 | - |
384
+ | 0.3091 | 11000 | 0.2482 | - |
385
+ | 0.3105 | 11050 | 0.2533 | - |
386
+ | 0.3119 | 11100 | 0.2598 | - |
387
+ | 0.3133 | 11150 | 0.2572 | - |
388
+ | 0.3147 | 11200 | 0.2631 | - |
389
+ | 0.3161 | 11250 | 0.2399 | - |
390
+ | 0.3175 | 11300 | 0.2509 | - |
391
+ | 0.3189 | 11350 | 0.2447 | - |
392
+ | 0.3203 | 11400 | 0.2395 | - |
393
+ | 0.3217 | 11450 | 0.2439 | - |
394
+ | 0.3231 | 11500 | 0.2497 | - |
395
+ | 0.3245 | 11550 | 0.2377 | - |
396
+ | 0.3260 | 11600 | 0.2452 | - |
397
+ | 0.3274 | 11650 | 0.2361 | - |
398
+ | 0.3288 | 11700 | 0.2431 | - |
399
+ | 0.3302 | 11750 | 0.2462 | - |
400
+ | 0.3316 | 11800 | 0.2438 | - |
401
+ | 0.3330 | 11850 | 0.2498 | - |
402
+ | 0.3344 | 11900 | 0.262 | - |
403
+ | 0.3358 | 11950 | 0.2451 | - |
404
+ | 0.3372 | 12000 | 0.251 | - |
405
+ | 0.3386 | 12050 | 0.2605 | - |
406
+ | 0.3400 | 12100 | 0.2477 | - |
407
+ | 0.3414 | 12150 | 0.2417 | - |
408
+ | 0.3428 | 12200 | 0.2566 | - |
409
+ | 0.3442 | 12250 | 0.2373 | - |
410
+ | 0.3456 | 12300 | 0.2444 | - |
411
+ | 0.3470 | 12350 | 0.2589 | - |
412
+ | 0.3484 | 12400 | 0.2491 | - |
413
+ | 0.3498 | 12450 | 0.2438 | - |
414
+ | 0.3512 | 12500 | 0.2519 | - |
415
+ | 0.3526 | 12550 | 0.2406 | - |
416
+ | 0.3541 | 12600 | 0.2472 | - |
417
+ | 0.3555 | 12650 | 0.2447 | - |
418
+ | 0.3569 | 12700 | 0.2677 | - |
419
+ | 0.3583 | 12750 | 0.2486 | - |
420
+ | 0.3597 | 12800 | 0.2585 | - |
421
+ | 0.3611 | 12850 | 0.2539 | - |
422
+ | 0.3625 | 12900 | 0.2556 | - |
423
+ | 0.3639 | 12950 | 0.2653 | - |
424
+ | 0.3653 | 13000 | 0.2583 | - |
425
+ | 0.3667 | 13050 | 0.2308 | - |
426
+ | 0.3681 | 13100 | 0.2586 | - |
427
+ | 0.3695 | 13150 | 0.2384 | - |
428
+ | 0.3709 | 13200 | 0.2645 | - |
429
+ | 0.3723 | 13250 | 0.2394 | - |
430
+ | 0.3737 | 13300 | 0.2575 | - |
431
+ | 0.3751 | 13350 | 0.2418 | - |
432
+ | 0.3765 | 13400 | 0.2414 | - |
433
+ | 0.3779 | 13450 | 0.2516 | - |
434
+ | 0.3793 | 13500 | 0.2571 | - |
435
+ | 0.3807 | 13550 | 0.2352 | - |
436
+ | 0.3822 | 13600 | 0.2584 | - |
437
+ | 0.3836 | 13650 | 0.2561 | - |
438
+ | 0.3850 | 13700 | 0.2672 | - |
439
+ | 0.3864 | 13750 | 0.2574 | - |
440
+ | 0.3878 | 13800 | 0.2398 | - |
441
+ | 0.3892 | 13850 | 0.2359 | - |
442
+ | 0.3906 | 13900 | 0.2397 | - |
443
+ | 0.3920 | 13950 | 0.2582 | - |
444
+ | 0.3934 | 14000 | 0.2468 | - |
445
+ | 0.3948 | 14050 | 0.2702 | - |
446
+ | 0.3962 | 14100 | 0.2547 | - |
447
+ | 0.3976 | 14150 | 0.2382 | - |
448
+ | 0.3990 | 14200 | 0.255 | - |
449
+ | 0.4004 | 14250 | 0.2382 | - |
450
+ | 0.4018 | 14300 | 0.2516 | - |
451
+ | 0.4032 | 14350 | 0.236 | - |
452
+ | 0.4046 | 14400 | 0.2499 | - |
453
+ | 0.4060 | 14450 | 0.2606 | - |
454
+ | 0.4074 | 14500 | 0.2514 | - |
455
+ | 0.4088 | 14550 | 0.2442 | - |
456
+ | 0.4103 | 14600 | 0.2516 | - |
457
+ | 0.4117 | 14650 | 0.2439 | - |
458
+ | 0.4131 | 14700 | 0.2547 | - |
459
+ | 0.4145 | 14750 | 0.2522 | - |
460
+ | 0.4159 | 14800 | 0.2421 | - |
461
+ | 0.4173 | 14850 | 0.2461 | - |
462
+ | 0.4187 | 14900 | 0.2663 | - |
463
+ | 0.4201 | 14950 | 0.259 | - |
464
+ | 0.4215 | 15000 | 0.2526 | - |
465
+ | 0.4229 | 15050 | 0.2527 | - |
466
+ | 0.4243 | 15100 | 0.2547 | - |
467
+ | 0.4257 | 15150 | 0.2696 | - |
468
+ | 0.4271 | 15200 | 0.2399 | - |
469
+ | 0.4285 | 15250 | 0.2557 | - |
470
+ | 0.4299 | 15300 | 0.2581 | - |
471
+ | 0.4313 | 15350 | 0.2402 | - |
472
+ | 0.4327 | 15400 | 0.2658 | - |
473
+ | 0.4341 | 15450 | 0.2491 | - |
474
+ | 0.4355 | 15500 | 0.2434 | - |
475
+ | 0.4369 | 15550 | 0.2511 | - |
476
+ | 0.4384 | 15600 | 0.2448 | - |
477
+ | 0.4398 | 15650 | 0.262 | - |
478
+ | 0.4412 | 15700 | 0.2549 | - |
479
+ | 0.4426 | 15750 | 0.2546 | - |
480
+ | 0.4440 | 15800 | 0.2444 | - |
481
+ | 0.4454 | 15850 | 0.2551 | - |
482
+ | 0.4468 | 15900 | 0.247 | - |
483
+ | 0.4482 | 15950 | 0.253 | - |
484
+ | 0.4496 | 16000 | 0.2615 | - |
485
+ | 0.4510 | 16050 | 0.2514 | - |
486
+ | 0.4524 | 16100 | 0.2587 | - |
487
+ | 0.4538 | 16150 | 0.2591 | - |
488
+ | 0.4552 | 16200 | 0.249 | - |
489
+ | 0.4566 | 16250 | 0.2459 | - |
490
+ | 0.4580 | 16300 | 0.2582 | - |
491
+ | 0.4594 | 16350 | 0.243 | - |
492
+ | 0.4608 | 16400 | 0.2493 | - |
493
+ | 0.4622 | 16450 | 0.2306 | - |
494
+ | 0.4636 | 16500 | 0.2561 | - |
495
+ | 0.4650 | 16550 | 0.2363 | - |
496
+ | 0.4664 | 16600 | 0.2412 | - |
497
+ | 0.4679 | 16650 | 0.2454 | - |
498
+ | 0.4693 | 16700 | 0.2575 | - |
499
+ | 0.4707 | 16750 | 0.2369 | - |
500
+ | 0.4721 | 16800 | 0.245 | - |
501
+ | 0.4735 | 16850 | 0.2591 | - |
502
+ | 0.4749 | 16900 | 0.2582 | - |
503
+ | 0.4763 | 16950 | 0.2629 | - |
504
+ | 0.4777 | 17000 | 0.2393 | - |
505
+ | 0.4791 | 17050 | 0.2563 | - |
506
+ | 0.4805 | 17100 | 0.2511 | - |
507
+ | 0.4819 | 17150 | 0.2538 | - |
508
+ | 0.4833 | 17200 | 0.2464 | - |
509
+ | 0.4847 | 17250 | 0.2511 | - |
510
+ | 0.4861 | 17300 | 0.244 | - |
511
+ | 0.4875 | 17350 | 0.2688 | - |
512
+ | 0.4889 | 17400 | 0.2729 | - |
513
+ | 0.4903 | 17450 | 0.2523 | - |
514
+ | 0.4917 | 17500 | 0.2507 | - |
515
+ | 0.4931 | 17550 | 0.2527 | - |
516
+ | 0.4945 | 17600 | 0.2478 | - |
517
+ | 0.4960 | 17650 | 0.26 | - |
518
+ | 0.4974 | 17700 | 0.2526 | - |
519
+ | 0.4988 | 17750 | 0.2549 | - |
520
+ | 0.5002 | 17800 | 0.2496 | - |
521
+ | 0.5016 | 17850 | 0.2537 | - |
522
+ | 0.5030 | 17900 | 0.2644 | - |
523
+ | 0.5044 | 17950 | 0.2633 | - |
524
+ | 0.5058 | 18000 | 0.2515 | - |
525
+ | 0.5072 | 18050 | 0.2551 | - |
526
+ | 0.5086 | 18100 | 0.2427 | - |
527
+ | 0.5100 | 18150 | 0.2615 | - |
528
+ | 0.5114 | 18200 | 0.2455 | - |
529
+ | 0.5128 | 18250 | 0.2615 | - |
530
+ | 0.5142 | 18300 | 0.2558 | - |
531
+ | 0.5156 | 18350 | 0.2483 | - |
532
+ | 0.5170 | 18400 | 0.2618 | - |
533
+ | 0.5184 | 18450 | 0.2404 | - |
534
+ | 0.5198 | 18500 | 0.2562 | - |
535
+ | 0.5212 | 18550 | 0.259 | - |
536
+ | 0.5226 | 18600 | 0.246 | - |
537
+ | 0.5241 | 18650 | 0.2529 | - |
538
+ | 0.5255 | 18700 | 0.2526 | - |
539
+ | 0.5269 | 18750 | 0.2381 | - |
540
+ | 0.5283 | 18800 | 0.2648 | - |
541
+ | 0.5297 | 18850 | 0.2628 | - |
542
+ | 0.5311 | 18900 | 0.2528 | - |
543
+ | 0.5325 | 18950 | 0.2447 | - |
544
+ | 0.5339 | 19000 | 0.2467 | - |
545
+ | 0.5353 | 19050 | 0.2487 | - |
546
+ | 0.5367 | 19100 | 0.2494 | - |
547
+ | 0.5381 | 19150 | 0.2441 | - |
548
+ | 0.5395 | 19200 | 0.2507 | - |
549
+ | 0.5409 | 19250 | 0.2494 | - |
550
+ | 0.5423 | 19300 | 0.2501 | - |
551
+ | 0.5437 | 19350 | 0.2586 | - |
552
+ | 0.5451 | 19400 | 0.2677 | - |
553
+ | 0.5465 | 19450 | 0.2558 | - |
554
+ | 0.5479 | 19500 | 0.2444 | - |
555
+ | 0.5493 | 19550 | 0.251 | - |
556
+ | 0.5507 | 19600 | 0.2545 | - |
557
+ | 0.5522 | 19650 | 0.2464 | - |
558
+ | 0.5536 | 19700 | 0.2565 | - |
559
+ | 0.5550 | 19750 | 0.2674 | - |
560
+ | 0.5564 | 19800 | 0.2483 | - |
561
+ | 0.5578 | 19850 | 0.241 | - |
562
+ | 0.5592 | 19900 | 0.2504 | - |
563
+ | 0.5606 | 19950 | 0.2655 | - |
564
+ | 0.5620 | 20000 | 0.2484 | - |
565
+ | 0.5634 | 20050 | 0.254 | - |
566
+ | 0.5648 | 20100 | 0.2482 | - |
567
+ | 0.5662 | 20150 | 0.2644 | - |
568
+ | 0.5676 | 20200 | 0.2694 | - |
569
+ | 0.5690 | 20250 | 0.258 | - |
570
+ | 0.5704 | 20300 | 0.2587 | - |
571
+ | 0.5718 | 20350 | 0.2571 | - |
572
+ | 0.5732 | 20400 | 0.2464 | - |
573
+ | 0.5746 | 20450 | 0.2531 | - |
574
+ | 0.5760 | 20500 | 0.2504 | - |
575
+ | 0.5774 | 20550 | 0.2551 | - |
576
+ | 0.5788 | 20600 | 0.253 | - |
577
+ | 0.5803 | 20650 | 0.2374 | - |
578
+ | 0.5817 | 20700 | 0.2405 | - |
579
+ | 0.5831 | 20750 | 0.2435 | - |
580
+ | 0.5845 | 20800 | 0.2569 | - |
581
+ | 0.5859 | 20850 | 0.2533 | - |
582
+ | 0.5873 | 20900 | 0.2508 | - |
583
+ | 0.5887 | 20950 | 0.2508 | - |
584
+ | 0.5901 | 21000 | 0.2531 | - |
585
+ | 0.5915 | 21050 | 0.2381 | - |
586
+ | 0.5929 | 21100 | 0.2009 | - |
587
+ | 0.5943 | 21150 | 0.0899 | - |
588
+ | 0.5957 | 21200 | 0.3046 | - |
589
+ | 0.5971 | 21250 | 0.2006 | - |
590
+ | 0.5985 | 21300 | 0.2289 | - |
591
+ | 0.5999 | 21350 | 0.1581 | - |
592
+ | 0.6013 | 21400 | 0.1769 | - |
593
+ | 0.6027 | 21450 | 0.2377 | - |
594
+ | 0.6041 | 21500 | 0.1988 | - |
595
+ | 0.6055 | 21550 | 0.2543 | - |
596
+ | 0.6069 | 21600 | 0.2517 | - |
597
+ | 0.6084 | 21650 | 0.2191 | - |
598
+ | 0.6098 | 21700 | 0.2803 | - |
599
+ | 0.6112 | 21750 | 0.2984 | - |
600
+ | 0.6126 | 21800 | 0.1915 | - |
601
+ | 0.6140 | 21850 | 0.189 | - |
602
+ | 0.6154 | 21900 | 0.1302 | - |
603
+ | 0.6168 | 21950 | 0.203 | - |
604
+ | 0.6182 | 22000 | 0.2038 | - |
605
+ | 0.6196 | 22050 | 0.134 | - |
606
+ | 0.6210 | 22100 | 0.1904 | - |
607
+ | 0.6224 | 22150 | 0.1477 | - |
608
+ | 0.6238 | 22200 | 0.1338 | - |
609
+ | 0.6252 | 22250 | 0.0709 | - |
610
+ | 0.6266 | 22300 | 0.0902 | - |
611
+ | 0.6280 | 22350 | 0.2025 | - |
612
+ | 0.6294 | 22400 | 0.0991 | - |
613
+ | 0.6308 | 22450 | 0.1321 | - |
614
+ | 0.6322 | 22500 | 0.1356 | - |
615
+ | 0.6336 | 22550 | 0.1682 | - |
616
+ | 0.6350 | 22600 | 0.2064 | - |
617
+ | 0.6365 | 22650 | 0.2 | - |
618
+ | 0.6379 | 22700 | 0.2105 | - |
619
+ | 0.6393 | 22750 | 0.2074 | - |
620
+ | 0.6407 | 22800 | 0.1901 | - |
621
+ | 0.6421 | 22850 | 0.1914 | - |
622
+ | 0.6435 | 22900 | 0.1831 | - |
623
+ | 0.6449 | 22950 | 0.1423 | - |
624
+ | 0.6463 | 23000 | 0.2502 | - |
625
+ | 0.6477 | 23050 | 0.1655 | - |
626
+ | 0.6491 | 23100 | 0.1585 | - |
627
+ | 0.6505 | 23150 | 0.2122 | - |
628
+ | 0.6519 | 23200 | 0.217 | - |
629
+ | 0.6533 | 23250 | 0.1704 | - |
630
+ | 0.6547 | 23300 | 0.189 | - |
631
+ | 0.6561 | 23350 | 0.1333 | - |
632
+ | 0.6575 | 23400 | 0.1863 | - |
633
+ | 0.6589 | 23450 | 0.2089 | - |
634
+ | 0.6603 | 23500 | 0.1261 | - |
635
+ | 0.6617 | 23550 | 0.1655 | - |
636
+ | 0.6631 | 23600 | 0.1721 | - |
637
+ | 0.6645 | 23650 | 0.083 | - |
638
+ | 0.6660 | 23700 | 0.1166 | - |
639
+ | 0.6674 | 23750 | 0.146 | - |
640
+ | 0.6688 | 23800 | 0.0423 | - |
641
+ | 0.6702 | 23850 | 0.1781 | - |
642
+ | 0.6716 | 23900 | 0.121 | - |
643
+ | 0.6730 | 23950 | 0.1624 | - |
644
+ | 0.6744 | 24000 | 0.1483 | - |
645
+ | 0.6758 | 24050 | 0.1479 | - |
646
+ | 0.6772 | 24100 | 0.2285 | - |
647
+ | 0.6786 | 24150 | 0.2084 | - |
648
+ | 0.6800 | 24200 | 0.12 | - |
649
+ | 0.6814 | 24250 | 0.115 | - |
650
+ | 0.6828 | 24300 | 0.1331 | - |
651
+ | 0.6842 | 24350 | 0.0971 | - |
652
+ | 0.6856 | 24400 | 0.0846 | - |
653
+ | 0.6870 | 24450 | 0.2254 | - |
654
+ | 0.6884 | 24500 | 0.1348 | - |
655
+ | 0.6898 | 24550 | 0.0633 | - |
656
+ | 0.6912 | 24600 | 0.1207 | - |
657
+ | 0.6926 | 24650 | 0.2109 | - |
658
+ | 0.6941 | 24700 | 0.0768 | - |
659
+ | 0.6955 | 24750 | 0.108 | - |
660
+ | 0.6969 | 24800 | 0.0665 | - |
661
+ | 0.6983 | 24850 | 0.0601 | - |
662
+ | 0.6997 | 24900 | 0.1922 | - |
663
+ | 0.7011 | 24950 | 0.1517 | - |
664
+ | 0.7025 | 25000 | 0.1049 | - |
665
+ | 0.7039 | 25050 | 0.1122 | - |
666
+ | 0.7053 | 25100 | 0.0973 | - |
667
+ | 0.7067 | 25150 | 0.1547 | - |
668
+ | 0.7081 | 25200 | 0.115 | - |
669
+ | 0.7095 | 25250 | 0.1881 | - |
670
+ | 0.7109 | 25300 | 0.2144 | - |
671
+ | 0.7123 | 25350 | 0.0567 | - |
672
+ | 0.7137 | 25400 | 0.0917 | - |
673
+ | 0.7151 | 25450 | 0.1404 | - |
674
+ | 0.7165 | 25500 | 0.019 | - |
675
+ | 0.7179 | 25550 | 0.1382 | - |
676
+ | 0.7193 | 25600 | 0.0727 | - |
677
+ | 0.7207 | 25650 | 0.1125 | - |
678
+ | 0.7222 | 25700 | 0.1133 | - |
679
+ | 0.7236 | 25750 | 0.0987 | - |
680
+ | 0.7250 | 25800 | 0.1915 | - |
681
+ | 0.7264 | 25850 | 0.09 | - |
682
+ | 0.7278 | 25900 | 0.1462 | - |
683
+ | 0.7292 | 25950 | 0.0881 | - |
684
+ | 0.7306 | 26000 | 0.1026 | - |
685
+ | 0.7320 | 26050 | 0.1079 | - |
686
+ | 0.7334 | 26100 | 0.1639 | - |
687
+ | 0.7348 | 26150 | 0.1229 | - |
688
+ | 0.7362 | 26200 | 0.3261 | - |
689
+ | 0.7376 | 26250 | 0.1426 | - |
690
+ | 0.7390 | 26300 | 0.0773 | - |
691
+ | 0.7404 | 26350 | 0.1607 | - |
692
+ | 0.7418 | 26400 | 0.1354 | - |
693
+ | 0.7432 | 26450 | 0.1512 | - |
694
+ | 0.7446 | 26500 | 0.1875 | - |
695
+ | 0.7460 | 26550 | 0.1403 | - |
696
+ | 0.7474 | 26600 | 0.1287 | - |
697
+ | 0.7488 | 26650 | 0.1892 | - |
698
+ | 0.7503 | 26700 | 0.166 | - |
699
+ | 0.7517 | 26750 | 0.2385 | - |
700
+ | 0.7531 | 26800 | 0.1445 | - |
701
+ | 0.7545 | 26850 | 0.0969 | - |
702
+ | 0.7559 | 26900 | 0.0948 | - |
703
+ | 0.7573 | 26950 | 0.0589 | - |
704
+ | 0.7587 | 27000 | 0.2326 | - |
705
+ | 0.7601 | 27050 | 0.1438 | - |
706
+ | 0.7615 | 27100 | 0.1032 | - |
707
+ | 0.7629 | 27150 | 0.0784 | - |
708
+ | 0.7643 | 27200 | 0.1478 | - |
709
+ | 0.7657 | 27250 | 0.1872 | - |
710
+ | 0.7671 | 27300 | 0.0672 | - |
711
+ | 0.7685 | 27350 | 0.0725 | - |
712
+ | 0.7699 | 27400 | 0.0771 | - |
713
+ | 0.7713 | 27450 | 0.2575 | - |
714
+ | 0.7727 | 27500 | 0.133 | - |
715
+ | 0.7741 | 27550 | 0.1222 | - |
716
+ | 0.7755 | 27600 | 0.1207 | - |
717
+ | 0.7769 | 27650 | 0.0973 | - |
718
+ | 0.7784 | 27700 | 0.2186 | - |
719
+ | 0.7798 | 27750 | 0.1648 | - |
720
+ | 0.7812 | 27800 | 0.1128 | - |
721
+ | 0.7826 | 27850 | 0.1626 | - |
722
+ | 0.7840 | 27900 | 0.1768 | - |
723
+ | 0.7854 | 27950 | 0.1806 | - |
724
+ | 0.7868 | 28000 | 0.1197 | - |
725
+ | 0.7882 | 28050 | 0.0472 | - |
726
+ | 0.7896 | 28100 | 0.1463 | - |
727
+ | 0.7910 | 28150 | 0.1707 | - |
728
+ | 0.7924 | 28200 | 0.0924 | - |
729
+ | 0.7938 | 28250 | 0.1708 | - |
730
+ | 0.7952 | 28300 | 0.1101 | - |
731
+ | 0.7966 | 28350 | 0.0867 | - |
732
+ | 0.7980 | 28400 | 0.1606 | - |
733
+ | 0.7994 | 28450 | 0.2422 | - |
734
+ | 0.8008 | 28500 | 0.1289 | - |
735
+ | 0.8022 | 28550 | 0.0513 | - |
736
+ | 0.8036 | 28600 | 0.1468 | - |
737
+ | 0.8050 | 28650 | 0.1742 | - |
738
+ | 0.8065 | 28700 | 0.0813 | - |
739
+ | 0.8079 | 28750 | 0.0916 | - |
740
+ | 0.8093 | 28800 | 0.0826 | - |
741
+ | 0.8107 | 28850 | 0.1457 | - |
742
+ | 0.8121 | 28900 | 0.0952 | - |
743
+ | 0.8135 | 28950 | 0.1376 | - |
744
+ | 0.8149 | 29000 | 0.06 | - |
745
+ | 0.8163 | 29050 | 0.1221 | - |
746
+ | 0.8177 | 29100 | 0.0713 | - |
747
+ | 0.8191 | 29150 | 0.1219 | - |
748
+ | 0.8205 | 29200 | 0.1051 | - |
749
+ | 0.8219 | 29250 | 0.1503 | - |
750
+ | 0.8233 | 29300 | 0.1128 | - |
751
+ | 0.8247 | 29350 | 0.0946 | - |
752
+ | 0.8261 | 29400 | 0.2115 | - |
753
+ | 0.8275 | 29450 | 0.1058 | - |
754
+ | 0.8289 | 29500 | 0.1085 | - |
755
+ | 0.8303 | 29550 | 0.1632 | - |
756
+ | 0.8317 | 29600 | 0.1022 | - |
757
+ | 0.8331 | 29650 | 0.136 | - |
758
+ | 0.8346 | 29700 | 0.1231 | - |
759
+ | 0.8360 | 29750 | 0.0929 | - |
760
+ | 0.8374 | 29800 | 0.1299 | - |
761
+ | 0.8388 | 29850 | 0.0693 | - |
762
+ | 0.8402 | 29900 | 0.0738 | - |
763
+ | 0.8416 | 29950 | 0.0826 | - |
764
+ | 0.8430 | 30000 | 0.1831 | - |
765
+ | 0.8444 | 30050 | 0.0962 | - |
766
+ | 0.8458 | 30100 | 0.0869 | - |
767
+ | 0.8472 | 30150 | 0.1459 | - |
768
+ | 0.8486 | 30200 | 0.1468 | - |
769
+ | 0.8500 | 30250 | 0.2132 | - |
770
+ | 0.8514 | 30300 | 0.1472 | - |
771
+ | 0.8528 | 30350 | 0.1294 | - |
772
+ | 0.8542 | 30400 | 0.0822 | - |
773
+ | 0.8556 | 30450 | 0.144 | - |
774
+ | 0.8570 | 30500 | 0.1216 | - |
775
+ | 0.8584 | 30550 | 0.1381 | - |
776
+ | 0.8598 | 30600 | 0.1612 | - |
777
+ | 0.8612 | 30650 | 0.1665 | - |
778
+ | 0.8627 | 30700 | 0.2035 | - |
779
+ | 0.8641 | 30750 | 0.136 | - |
780
+ | 0.8655 | 30800 | 0.1685 | - |
781
+ | 0.8669 | 30850 | 0.1421 | - |
782
+ | 0.8683 | 30900 | 0.1169 | - |
783
+ | 0.8697 | 30950 | 0.1799 | - |
784
+ | 0.8711 | 31000 | 0.2185 | - |
785
+ | 0.8725 | 31050 | 0.1321 | - |
786
+ | 0.8739 | 31100 | 0.145 | - |
787
+ | 0.8753 | 31150 | 0.1848 | - |
788
+ | 0.8767 | 31200 | 0.2173 | - |
789
+ | 0.8781 | 31250 | 0.2036 | - |
790
+ | 0.8795 | 31300 | 0.2056 | - |
791
+ | 0.8809 | 31350 | 0.312 | - |
792
+ | 0.8823 | 31400 | 0.2119 | - |
793
+ | 0.8837 | 31450 | 0.1875 | - |
794
+ | 0.8851 | 31500 | 0.2216 | - |
795
+ | 0.8865 | 31550 | 0.2267 | - |
796
+ | 0.8879 | 31600 | 0.2709 | - |
797
+ | 0.8893 | 31650 | 0.1868 | - |
798
+ | 0.8907 | 31700 | 0.1752 | - |
799
+ | 0.8922 | 31750 | 0.2468 | - |
800
+ | 0.8936 | 31800 | 0.1632 | - |
801
+ | 0.8950 | 31850 | 0.2483 | - |
802
+ | 0.8964 | 31900 | 0.1597 | - |
803
+ | 0.8978 | 31950 | 0.1587 | - |
804
+ | 0.8992 | 32000 | 0.0897 | - |
805
+ | 0.9006 | 32050 | 0.0764 | - |
806
+ | 0.9020 | 32100 | 0.1798 | - |
807
+ | 0.9034 | 32150 | 0.1254 | - |
808
+ | 0.9048 | 32200 | 0.1905 | - |
809
+ | 0.9062 | 32250 | 0.0714 | - |
810
+ | 0.9076 | 32300 | 0.1377 | - |
811
+ | 0.9090 | 32350 | 0.0192 | - |
812
+ | 0.9104 | 32400 | 0.1208 | - |
813
+ | 0.9118 | 32450 | 0.239 | - |
814
+ | 0.9132 | 32500 | 0.0965 | - |
815
+ | 0.9146 | 32550 | 0.1189 | - |
816
+ | 0.9160 | 32600 | 0.0856 | - |
817
+ | 0.9174 | 32650 | 0.1041 | - |
818
+ | 0.9188 | 32700 | 0.1107 | - |
819
+ | 0.9203 | 32750 | 0.1499 | - |
820
+ | 0.9217 | 32800 | 0.0874 | - |
821
+ | 0.9231 | 32850 | 0.1255 | - |
822
+ | 0.9245 | 32900 | 0.1099 | - |
823
+ | 0.9259 | 32950 | 0.1806 | - |
824
+ | 0.9273 | 33000 | 0.0544 | - |
825
+ | 0.9287 | 33050 | 0.0504 | - |
826
+ | 0.9301 | 33100 | 0.2441 | - |
827
+ | 0.9315 | 33150 | 0.0266 | - |
828
+ | 0.9329 | 33200 | 0.0985 | - |
829
+ | 0.9343 | 33250 | 0.0923 | - |
830
+ | 0.9357 | 33300 | 0.1054 | - |
831
+ | 0.9371 | 33350 | 0.0625 | - |
832
+ | 0.9385 | 33400 | 0.0882 | - |
833
+ | 0.9399 | 33450 | 0.102 | - |
834
+ | 0.9413 | 33500 | 0.108 | - |
835
+ | 0.9427 | 33550 | 0.135 | - |
836
+ | 0.9441 | 33600 | 0.1016 | - |
837
+ | 0.9455 | 33650 | 0.2008 | - |
838
+ | 0.9469 | 33700 | 0.0591 | - |
839
+ | 0.9484 | 33750 | 0.1922 | - |
840
+ | 0.9498 | 33800 | 0.1045 | - |
841
+ | 0.9512 | 33850 | 0.102 | - |
842
+ | 0.9526 | 33900 | 0.0634 | - |
843
+ | 0.9540 | 33950 | 0.0668 | - |
844
+ | 0.9554 | 34000 | 0.1339 | - |
845
+ | 0.9568 | 34050 | 0.0599 | - |
846
+ | 0.9582 | 34100 | 0.0623 | - |
847
+ | 0.9596 | 34150 | 0.1133 | - |
848
+ | 0.9610 | 34200 | 0.1218 | - |
849
+ | 0.9624 | 34250 | 0.0618 | - |
850
+ | 0.9638 | 34300 | 0.1062 | - |
851
+ | 0.9652 | 34350 | 0.0909 | - |
852
+ | 0.9666 | 34400 | 0.0885 | - |
853
+ | 0.9680 | 34450 | 0.1461 | - |
854
+ | 0.9694 | 34500 | 0.0254 | - |
855
+ | 0.9708 | 34550 | 0.0697 | - |
856
+ | 0.9722 | 34600 | 0.016 | - |
857
+ | 0.9736 | 34650 | 0.1524 | - |
858
+ | 0.9750 | 34700 | 0.1468 | - |
859
+ | 0.9765 | 34750 | 0.1497 | - |
860
+ | 0.9779 | 34800 | 0.0785 | - |
861
+ | 0.9793 | 34850 | 0.0645 | - |
862
+ | 0.9807 | 34900 | 0.1357 | - |
863
+ | 0.9821 | 34950 | 0.1469 | - |
864
+ | 0.9835 | 35000 | 0.2356 | - |
865
+ | 0.9849 | 35050 | 0.018 | - |
866
+ | 0.9863 | 35100 | 0.1534 | - |
867
+ | 0.9877 | 35150 | 0.14 | - |
868
+ | 0.9891 | 35200 | 0.1001 | - |
869
+ | 0.9905 | 35250 | 0.0614 | - |
870
+ | 0.9919 | 35300 | 0.1407 | - |
871
+ | 0.9933 | 35350 | 0.1104 | - |
872
+ | 0.9947 | 35400 | 0.1477 | - |
873
+ | 0.9961 | 35450 | 0.1279 | - |
874
+ | 0.9975 | 35500 | 0.0957 | - |
875
+ | 0.9989 | 35550 | 0.0579 | - |
876
+ | **1.0** | **35588** | **-** | **0.1207** |
877
+
878
+ * The bold row denotes the saved checkpoint.
879
+ ### Framework Versions
880
+ - Python: 3.11.9
881
+ - SetFit: 1.1.0.dev0
882
+ - Sentence Transformers: 3.0.1
883
+ - Transformers: 4.44.2
884
+ - PyTorch: 2.4.0+cu121
885
+ - Datasets: 2.21.0
886
+ - Tokenizers: 0.19.1
887
+
888
+ ## Citation
889
+
890
+ ### BibTeX
891
+ ```bibtex
892
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
893
+ doi = {10.48550/ARXIV.2209.11055},
894
+ url = {https://arxiv.org/abs/2209.11055},
895
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
896
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
897
+ title = {Efficient Few-Shot Learning Without Prompts},
898
+ publisher = {arXiv},
899
+ year = {2022},
900
+ copyright = {Creative Commons Attribution 4.0 International}
901
+ }
902
+ ```
903
+
904
+ <!--
905
+ ## Glossary
906
+
907
+ *Clearly define terms in order to be accessible across audiences.*
908
+ -->
909
+
910
+ <!--
911
+ ## Model Card Authors
912
+
913
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
914
+ -->
915
+
916
+ <!--
917
+ ## Model Card Contact
918
+
919
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
920
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bge-large-en-v1.5-brahmaputra-iter-9-1-epoch/step_35588",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 4096,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 16,
24
+ "num_hidden_layers": 24,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": [
4
+ "Tablejoin",
5
+ "Rejection",
6
+ "Aggregation",
7
+ "Lookup",
8
+ "Generalreply",
9
+ "Viewtables",
10
+ "Lookup_1"
11
+ ]
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2a652df5289a39b803aac115c775c6118ab178f030731bae9a5a1c028cf5c33
3
+ size 1340612432
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae6aaf2fd6ef1d72e0c0784121aff536f1392e1ce2a75a939db4a8d7395e175a
3
+ size 58575
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff