File size: 1,134 Bytes
62f5c10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
from typing import Dict, List, Any
from sentence_transformers import SentenceTransformer
class EndpointHandler():
def __init__(self, path=""):
model_name = "all-MiniLM-L6-v2"
self.model = SentenceTransformer(
model_name,
backend="onnx",
model_kwargs={
"file_name": "model_O3.onnx",
"provider": "CUDAExecutionProvider",
}
)
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
"""
Args:
data (:obj:):
includes the input data and the parameters for the inference.
Return:
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing :
- "label": A string representing what the label/class is. There can be multiple labels.
- "score": A score between 0 and 1 describing how confident the model is for this label/class.
"""
inputs = data.pop("inputs", data)
prediction = self.model.encode(inputs)
return prediction.tolist() |