|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from latentsync.utils.util import read_video, write_video
|
|
from latentsync.utils.image_processor import ImageProcessor
|
|
import torch
|
|
from einops import rearrange
|
|
import os
|
|
import tqdm
|
|
import subprocess
|
|
from multiprocessing import Process
|
|
import shutil
|
|
|
|
paths = []
|
|
|
|
|
|
def gather_video_paths(input_dir, output_dir):
|
|
for video in sorted(os.listdir(input_dir)):
|
|
if video.endswith(".mp4"):
|
|
video_input = os.path.join(input_dir, video)
|
|
video_output = os.path.join(output_dir, video)
|
|
if os.path.isfile(video_output):
|
|
continue
|
|
paths.append((video_input, video_output))
|
|
elif os.path.isdir(os.path.join(input_dir, video)):
|
|
gather_video_paths(os.path.join(input_dir, video), os.path.join(output_dir, video))
|
|
|
|
|
|
class FaceDetector:
|
|
def __init__(self, resolution: int = 512, device: str = "cpu"):
|
|
self.image_processor = ImageProcessor(resolution, "fix_mask", device)
|
|
|
|
def affine_transform_video(self, video_path):
|
|
video_frames = read_video(video_path, change_fps=False)
|
|
results = []
|
|
for frame in video_frames:
|
|
frame, _, _ = self.image_processor.affine_transform(frame)
|
|
results.append(frame)
|
|
results = torch.stack(results)
|
|
|
|
results = rearrange(results, "f c h w -> f h w c").numpy()
|
|
return results
|
|
|
|
def close(self):
|
|
self.image_processor.close()
|
|
|
|
|
|
def combine_video_audio(video_frames, video_input_path, video_output_path, process_temp_dir):
|
|
video_name = os.path.basename(video_input_path)[:-4]
|
|
audio_temp = os.path.join(process_temp_dir, f"{video_name}_temp.wav")
|
|
video_temp = os.path.join(process_temp_dir, f"{video_name}_temp.mp4")
|
|
|
|
write_video(video_temp, video_frames, fps=25)
|
|
|
|
command = f"ffmpeg -y -loglevel error -i {video_input_path} -q:a 0 -map a {audio_temp}"
|
|
subprocess.run(command, shell=True)
|
|
|
|
os.makedirs(os.path.dirname(video_output_path), exist_ok=True)
|
|
command = f"ffmpeg -y -loglevel error -i {video_temp} -i {audio_temp} -c:v libx264 -c:a aac -map 0:v -map 1:a -q:v 0 -q:a 0 {video_output_path}"
|
|
subprocess.run(command, shell=True)
|
|
|
|
os.remove(audio_temp)
|
|
os.remove(video_temp)
|
|
|
|
|
|
def func(paths, process_temp_dir, device_id, resolution):
|
|
os.makedirs(process_temp_dir, exist_ok=True)
|
|
face_detector = FaceDetector(resolution, f"cuda:{device_id}")
|
|
|
|
for video_input, video_output in paths:
|
|
if os.path.isfile(video_output):
|
|
continue
|
|
try:
|
|
video_frames = face_detector.affine_transform_video(video_input)
|
|
except Exception as e:
|
|
print(f"Exception: {e} - {video_input}")
|
|
continue
|
|
|
|
os.makedirs(os.path.dirname(video_output), exist_ok=True)
|
|
combine_video_audio(video_frames, video_input, video_output, process_temp_dir)
|
|
print(f"Saved: {video_output}")
|
|
|
|
face_detector.close()
|
|
|
|
|
|
def split(a, n):
|
|
k, m = divmod(len(a), n)
|
|
return (a[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n))
|
|
|
|
|
|
def affine_transform_multi_gpus(input_dir, output_dir, temp_dir, resolution, num_workers):
|
|
print(f"Recursively gathering video paths of {input_dir} ...")
|
|
gather_video_paths(input_dir, output_dir)
|
|
num_devices = torch.cuda.device_count()
|
|
if num_devices == 0:
|
|
raise RuntimeError("No GPUs found")
|
|
|
|
if os.path.exists(temp_dir):
|
|
shutil.rmtree(temp_dir)
|
|
os.makedirs(temp_dir, exist_ok=True)
|
|
|
|
split_paths = list(split(paths, num_workers * num_devices))
|
|
|
|
processes = []
|
|
|
|
for i in range(num_devices):
|
|
for j in range(num_workers):
|
|
process_index = i * num_workers + j
|
|
process = Process(
|
|
target=func, args=(split_paths[process_index], os.path.join(temp_dir, f"process_{i}"), i, resolution)
|
|
)
|
|
process.start()
|
|
processes.append(process)
|
|
|
|
for process in processes:
|
|
process.join()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/avatars/resampled/train"
|
|
output_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/avatars/affine_transformed/train"
|
|
temp_dir = "temp"
|
|
resolution = 256
|
|
num_workers = 10
|
|
|
|
affine_transform_multi_gpus(input_dir, output_dir, temp_dir, resolution, num_workers)
|
|
|