--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-7B-Instruct tags: - axolotl - generated_from_trainer datasets: - medalpaca/medical_meadow_medqa model-index: - name: qwen2-ins-full-fsdp results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: Qwen/Qwen2.5-7B-Instruct trust_remote_code: true load_in_8bit: load_in_4bit: strict: false datasets: - path: medalpaca/medical_meadow_medqa type: alpaca dataset_prepared_path: val_set_size: 0.2 output_dir: ./fulloutputs/out sequence_len: 8192 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true wandb_project: full-ft-qwen wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 1 num_epochs: 3 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.00002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 10 xformers_attention: flash_attention: true warmup_steps: eval_steps: 100 save_steps: 100 debug: deepspeed: deepspeed_configs/zero2.json weight_decay: 0.05 fsdp: fsdp_config: special_tokens: hub_model_id: neginashz/qwen2-ins-full-fsdp early_stopping_patience: 3 ```

# qwen2-ins-full-fsdp This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the medalpaca/medical_meadow_medqa dataset. It achieves the following results on the evaluation set: - Loss: 0.1810 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 4 - total_eval_batch_size: 4 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 6 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0548 | 1.3889 | 100 | 0.1461 | | 0.0061 | 2.7778 | 200 | 0.1810 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0