Update README.md
Browse files
README.md
CHANGED
@@ -1,201 +1,75 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
[More Information Needed]
|
77 |
-
|
78 |
-
## Training Details
|
79 |
-
|
80 |
-
### Training Data
|
81 |
-
|
82 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
83 |
-
|
84 |
-
[More Information Needed]
|
85 |
-
|
86 |
-
### Training Procedure
|
87 |
-
|
88 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
89 |
-
|
90 |
-
#### Preprocessing [optional]
|
91 |
-
|
92 |
-
[More Information Needed]
|
93 |
-
|
94 |
-
|
95 |
-
#### Training Hyperparameters
|
96 |
-
|
97 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
98 |
-
|
99 |
-
#### Speeds, Sizes, Times [optional]
|
100 |
-
|
101 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
102 |
-
|
103 |
-
[More Information Needed]
|
104 |
-
|
105 |
-
## Evaluation
|
106 |
-
|
107 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
108 |
-
|
109 |
-
### Testing Data, Factors & Metrics
|
110 |
-
|
111 |
-
#### Testing Data
|
112 |
-
|
113 |
-
<!-- This should link to a Dataset Card if possible. -->
|
114 |
-
|
115 |
-
[More Information Needed]
|
116 |
-
|
117 |
-
#### Factors
|
118 |
-
|
119 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
120 |
-
|
121 |
-
[More Information Needed]
|
122 |
-
|
123 |
-
#### Metrics
|
124 |
-
|
125 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
126 |
-
|
127 |
-
[More Information Needed]
|
128 |
-
|
129 |
-
### Results
|
130 |
-
|
131 |
-
[More Information Needed]
|
132 |
-
|
133 |
-
#### Summary
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
## Model Examination [optional]
|
138 |
-
|
139 |
-
<!-- Relevant interpretability work for the model goes here -->
|
140 |
-
|
141 |
-
[More Information Needed]
|
142 |
-
|
143 |
-
## Environmental Impact
|
144 |
-
|
145 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
146 |
-
|
147 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
148 |
-
|
149 |
-
- **Hardware Type:** [More Information Needed]
|
150 |
-
- **Hours used:** [More Information Needed]
|
151 |
-
- **Cloud Provider:** [More Information Needed]
|
152 |
-
- **Compute Region:** [More Information Needed]
|
153 |
-
- **Carbon Emitted:** [More Information Needed]
|
154 |
-
|
155 |
-
## Technical Specifications [optional]
|
156 |
-
|
157 |
-
### Model Architecture and Objective
|
158 |
-
|
159 |
-
[More Information Needed]
|
160 |
-
|
161 |
-
### Compute Infrastructure
|
162 |
-
|
163 |
-
[More Information Needed]
|
164 |
-
|
165 |
-
#### Hardware
|
166 |
-
|
167 |
-
[More Information Needed]
|
168 |
-
|
169 |
-
#### Software
|
170 |
-
|
171 |
-
[More Information Needed]
|
172 |
-
|
173 |
-
## Citation [optional]
|
174 |
-
|
175 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
176 |
-
|
177 |
-
**BibTeX:**
|
178 |
-
|
179 |
-
[More Information Needed]
|
180 |
-
|
181 |
-
**APA:**
|
182 |
-
|
183 |
-
[More Information Needed]
|
184 |
-
|
185 |
-
## Glossary [optional]
|
186 |
-
|
187 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
188 |
-
|
189 |
-
[More Information Needed]
|
190 |
-
|
191 |
-
## More Information [optional]
|
192 |
-
|
193 |
-
[More Information Needed]
|
194 |
-
|
195 |
-
## Model Card Authors [optional]
|
196 |
-
|
197 |
-
[More Information Needed]
|
198 |
-
|
199 |
-
## Model Card Contact
|
200 |
-
|
201 |
-
[More Information Needed]
|
|
|
1 |
+
# CALM3-22B-Chat GPTQ量子化モデル
|
2 |
+
|
3 |
+
## モデル概要
|
4 |
+
|
5 |
+
- **モデル名**: nejumi/calm3-22b-chat-GPTQ-Int8-calib-ja-1k および nejumi/calm3-22b-chat-GPTQ-Int4-calib-ja-1k
|
6 |
+
- **ベースモデル**: [cyberagent/calm3-22b-chat](https://huggingface.co/cyberagent/calm3-22b-chat)
|
7 |
+
- **モデルサイズ**: 22,143,375,360 パラメータ
|
8 |
+
- **カテゴリ**: 10B≤ <30B
|
9 |
+
|
10 |
+
## 量子化の詳細
|
11 |
+
|
12 |
+
- **Calibration データ**: nejumi/wikipedia-ja-20230720-4k の先頭1000行
|
13 |
+
- **量子化パラメータ**:
|
14 |
+
- group_size: 128
|
15 |
+
- prec_damp: 0.00
|
16 |
+
- desc_act: True
|
17 |
+
- use_exllama: False
|
18 |
+
- model_seqlen: 2048
|
19 |
+
|
20 |
+
## 性能評価
|
21 |
+
|
22 |
+
| 指標 | Int8 | Int4 | ベースモデル |
|
23 |
+
|------|------|------|--------------|
|
24 |
+
| 汎用的言語性能(GLP)平均 | 0.6180 | 0.6187 | 0.6193 |
|
25 |
+
| アラインメント(ALT)平均 | 0.6958 | 0.6908 | 0.6793 |
|
26 |
+
| 総合平均 | 0.6569 | 0.6547 | 0.6493 |
|
27 |
+
|
28 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64bcb332b7375f6b8456d937/1zgDXr6VzXTp-7m2jUm_z.png)
|
29 |
+
青: Original
|
30 |
+
緑: GPTQ 4bit
|
31 |
+
赤: GPTQ 8bit
|
32 |
+
|
33 |
+
### 詳細評価
|
34 |
+
|
35 |
+
#### 汎用的言語性能(GLP)
|
36 |
+
|
37 |
+
| サブカテゴリ | Int8 | Int4 | ベースモデル |
|
38 |
+
|-------------|------|------|--------------|
|
39 |
+
| 表現 | 0.8417 | 0.8317 | 0.8300 |
|
40 |
+
| 翻訳 | 0.8390 | 0.8422 | 0.8409 |
|
41 |
+
| 情報検索 | 0.8838 | 0.8739 | 0.8880 |
|
42 |
+
| 推論 | 0.5800 | 0.5950 | 0.5400 |
|
43 |
+
| 数学的推論 | 0.4467 | 0.4550 | 0.4450 |
|
44 |
+
| 抽出 | 0.2509 | 0.2550 | 0.2689 |
|
45 |
+
| 知識・質問応答 | 0.6333 | 0.6216 | 0.6300 |
|
46 |
+
| 英語 | 0.5140 | 0.5316 | 0.5386 |
|
47 |
+
| 意味解析 | 0.6820 | 0.6940 | 0.6850 |
|
48 |
+
| 構文解析 | 0.5086 | 0.4871 | 0.5265 |
|
49 |
+
|
50 |
+
#### アラインメント(ALT)
|
51 |
+
|
52 |
+
| サブカテゴリ | Int8 | Int4 | ベースモデル |
|
53 |
+
|-------------|------|------|--------------|
|
54 |
+
| 制御性 | 0.7822 | 0.7830 | 0.7823 |
|
55 |
+
| 倫理・道徳 | 0.9100 | 0.9000 | 0.8800 |
|
56 |
+
| 毒性 | 0.7169 | 0.7151 | 0.7053 |
|
57 |
+
| バイアス | 0.8178 | 0.7856 | 0.7582 |
|
58 |
+
| 堅牢性 | 0.3774 | 0.3887 | 0.3811 |
|
59 |
+
| 真実性 | 0.5704 | 0.5722 | 0.5687 |
|
60 |
+
|
61 |
+
## 追加ベンチマーク
|
62 |
+
|
63 |
+
| ベンチマーク | Int8 | Int4 | ベースモデル |
|
64 |
+
|-------------|------|------|--------------|
|
65 |
+
| JASTER (0-shot) | 0.5656 | 0.5642 | 0.5733 |
|
66 |
+
| JASTER (2-shot) | 0.5967 | 0.5882 | 0.6041 |
|
67 |
+
| MT-Bench | 7.1313 | 7.1500 | 6.9313 |
|
68 |
+
| LCTG | 0.6330 | 0.6390 | 0.6360 |
|
69 |
+
|
70 |
+
## 注意事項
|
71 |
+
|
72 |
+
- この量子化モデルは、オリジナルのcyberagent/calm3-22b-chatモデルをGPTQ手法を用いて圧縮したものです。
|
73 |
+
- Int8とInt4の2つのバリエーションがあり、それぞれ異なる精度と効率のトレードオフを提供します。
|
74 |
+
- 性能指標は、オリジナルモデルと比較してわずかな違いがありますが、多くの指標で大きな性能低下を伴わない結果を示しています。
|
75 |
+
- 量子化プロセスには、日本語Wikipediaの最新データの一部が使用されており、日本語タスクに最適化されている可能性があります。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|