metadata
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
- lora
- diffusers
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: pixel art
widget:
- text: pixel art, a cute corgi, simple, flat colors
datasets:
- mlfoundations/dclm-baseline-1.0
pipeline_tag: text-to-image
Pixel Art XL
Consider supporting further research on Patreon or Twitter
Downscale 8 times to get pixel perfect images (use Nearest Neighbors) Use a fixed VAE to avoid artifacts (0.9 or fp16 fix)
Need more performance?
Use it with a LCM Lora!
Use 8 steps and guidance scale of 1.5 1.2 Lora strength for the Pixel Art XL works better
from diffusers import DiffusionPipeline, LCMScheduler
import torch
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
lcm_lora_id = "latent-consistency/lcm-lora-sdxl"
pipe = DiffusionPipeline.from_pretrained(model_id, variant="fp16")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights(lcm_lora_id, adapter_name="lora")
pipe.load_lora_weights("./pixel-art-xl.safetensors", adapter_name="pixel")
pipe.set_adapters(["lora", "pixel"], adapter_weights=[1.0, 1.2])
pipe.to(device="cuda", dtype=torch.float16)
prompt = "pixel, a cute corgi"
negative_prompt = "3d render, realistic"
num_images = 9
for i in range(num_images):
img = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=8,
guidance_scale=1.5,
).images[0]
img.save(f"lcm_lora_{i}.png")
Tips:
Don't use refiner
Works great with only 1 text encoder
No style prompt required
No trigger keyword require
Works great with isometric and non-isometric
Works with 0.9 and 1.0
Changelog
v1: Initial release